THE MASS SPECTROMETER
This page describes how a mass spectrum is produced using a mass spectrometer.
How a mass spectrometer works
The basic principle
If something is moving and you subject it to a sideways force, instead of moving in a straight line, it will move in a curve - deflected out of its original path by the sideways force.
Suppose you had a cannonball travelling past you and you wanted to deflect it as it went by you. All you've got is a jet of water from a hose-pipe that you can squirt at it. Frankly, its not going to make a lot of difference! Because the cannonball is so heavy, it will hardly be deflected at all from its original course.
But suppose instead, you tried to deflect a table tennis ball travelling at the same speed as the cannonball using the same jet of water. Because this ball is so light, you will get a huge deflection.
The amount of deflection you will get for a given sideways force depends on the mass of the ball. If you knew the speed of the ball and the size of the force, you could calculate the mass of the ball if you knew what sort of curved path it was deflected through. The less the deflection, the heavier the ball.
Note: I'm not suggesting that you personally would have to do the calculation, although the maths isn't actually very difficult - certainly no more than A'level standard!
You can apply exactly the same principle to atomic sized particles.
An outline of what happens in a mass spectrometer
Atoms and molecules can be deflected by magnetic fields - provided the atom or molecule is first turned into an ion. Electrically charged particles are affected by a magnetic field although electrically neutral ones aren't.
The sequence is :
Stage 1: Ionisation
The atom or molecule is ionised by knocking one or more electrons off to give a positive ion. This is true even for things which you would normally expect to form negative ions (chlorine, for example) or never form ions at all (argon, for example). Most mass spectrometers work with positive ions.
Note: All mass spectrometers that you will come across if you are doing a course for 16 - 18 year olds work with positive ions. Even if a few atoms in a sample of chlorine, for example, captured an electron instead of losing one, the negative ions formed wouldn't get all the way through the ordinary mass spectrometer. But it has been pointed out to me that there is work being done on negative ion mass spectrometers, although they use a different ionisation technique.
My thanks to Professor John Todd of the University of Kent for drawing this to my attention.
Stage 2: Acceleration
The ions are accelerated so that they all have the same kinetic energy.
Stage 3: Deflection
The ions are then deflected by a magnetic field according to their masses. The lighter they are, the more they are deflected.
The amount of deflection also depends on the number of positive charges on the ion - in other words, on how many electrons were knocked off in the first stage. The more the ion is charged, the more it gets deflected.
Stage 4: Detection
The beam of ions passing through the machine is detected electrically.
A full diagram of a mass spectrometer
Understanding what's going on
The need for a vacuum
It's important that the ions produced in the ionisation chamber have a free run through the machine without hitting air molecules.
Ionisation
The vaporised sample passes into the ionisation chamber. The electrically heated metal coil gives off electrons which are attracted to the electron trap which is a positively charged plate.
The particles in the sample (atoms or molecules) are therefore bombarded with a stream of electrons, and some of the collisions are energetic enough to knock one or more electrons out of the sample particles to make positive ions.
Most of the positive ions formed will carry a charge of +1 because it is much more difficult to remove further electrons from an already positive ion.
These positive ions are persuaded out into the rest of the machine by the ion repeller which is another metal plate carrying a slight positive charge.
Note: As you will see in a moment, the whole ionisation chamber is held at a positive voltage of about 10,000 volts. Where we are talking about the two plates having positive charges, these charges are in addition to that 10,000 volts.
Acceleration
The positive ions are repelled away from the very positive ionisation chamber and pass through three slits, the final one of which is at 0 volts. The middle slit carries some intermediate voltage. All the ions are accelerated into a finely focused beam.
Deflection
Different ions are deflected by the magnetic field by different amounts. The amount of deflection depends on:
the mass of the ion. Lighter ions are deflected more than heavier ones.
the charge on the ion. Ions with 2 (or more) positive charges are de