uilt by the Google Brain team, TensorFlow represents computations as stateful dataflow graphs. TensorFlow is able to model computations on a wide variety of hardware, from consumer devices such as those powered by Android, to large-scale heterogeneous, multiple GPU systems. TensorFlow claims to be able to, without significant alteration of code, move execution of the computationally expensive tasks of a given graph from solely CPU to heterogeneous GPU-accelerated environments. Given these details, it goes without saying that TensorFlow aims to bring massive parallelism and high scalability to machine learning for all.