Figure 2. Technical RouteIII. DATA PROCESSING AND ANALYSIS RESULTSA. M การแปล - Figure 2. Technical RouteIII. DATA PROCESSING AND ANALYSIS RESULTSA. M ไทย วิธีการพูด

Figure 2. Technical RouteIII. DATA

Figure 2. Technical Route
III. DATA PROCESSING AND ANALYSIS RESULTS
A. Multiple Classified methods of Image Interpretation
It should have the same or similar characteristics of spectral and spatial information when the same features in the similar conditions (light, terrain, etc.). on the contrary, different types of surface features has different diversities. According to this difference, all the pixels of the image are divided into several categories based on their nature properties (Class). Regardless of the features’ informational extraction, the dynamic monitoring or the productions of thematic maps and remote sensing images to establish, they all can do without classification. The specific application of computer classification is to identify and classify the features atribute of remote sensing image and It is also the pattern of recognized technology in the field of remote sensing. The purpose of classification is to identify the actual surface features from the image and then to extract information about surface features, the process is that each pixel point or area is attributed to a number of categories in one class actually or several thematic elements in the one, it will complete the twodimensional gray-scale image data from space to the target pattern space.
According to the classification need, personnel provide the training samples and the known category, training and supervising the classifier, remote sensing image classified method can be divided into supervised classification and nonsupervised classification.
(1) Non-Supervised Classification
The classification process does not impose any priori knowledge, It just depends on the pixel’s spectral characteristics, according to the similarity into several categories, the research uses the Iterative Self-Organizing Data Analysis (ISODATA) algorithm to classify a group of
pixels.
(2) Supervised Classification
Different from unsupervised classification, the supervised classification is on the basis of a priori knowledge to distinguish from various types of surface features’ samples on remote sensing images, then set up templates and take automatic identification. The basic process of image classification as shown below:

0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
รูปที่ 2 กระบวนการผลิตทางเทคนิคIII. ข้อมูลประมวลผลและวิเคราะห์ผลA. หลายลับวิธีการตีความภาพ จึงควรมีลักษณะเหมือน หรือคล้ายกันของข้อมูลปริภูมิ และสเปกตรัมเมื่อเดียวกันมีสภาพคล้าย (แสง ภูมิประเทศ ฯลฯ) ดอก ลักษณะพื้นผิวชนิดต่าง ๆ มีความหลากหลายแตกต่างกัน ตามความแตกต่างนี้ พิกเซลทั้งหมดของภาพจะแบ่งออกเป็นหลายประเภทตามคุณสมบัติของธรรมชาติ (ชั้น) แยกรายละเอียดของคุณลักษณะ การตรวจสอบแบบไดนามิก หรือการผลิตของแผนที่เฉพาะเรื่องและภาพไร้สายระยะไกลเพื่อสร้าง พวกเขาทั้งหมดไม่สามารถจัดประเภท แอพลิเคชันเฉพาะของการแบ่งประเภทของคอมพิวเตอร์จะระบุ และจัดประเภท atribute คุณลักษณะของภาพไร้สายระยะไกล และเป็นรูปแบบของเทคโนโลยีรู้จำในแชมพู วัตถุประสงค์ของการจัดประเภทจะระบุคุณสมบัติผิวจริงจากภาพ และในการดึงข้อมูลเกี่ยวกับคุณลักษณะของพื้นผิว กระบวนการโดยที่แต่ละจุดพิกเซลหรือตั้งเป็นบันทึกของหมวดหมู่ในชั้นจริง หรือองค์ประกอบเฉพาะเรื่องหลายอย่างในหนึ่ง จะกรอกข้อมูลสีเทาขนาดภาพ twodimensional จากพื้นที่ไปยังเป้าหมายรูปแบบช่อง ตามความต้องการจัดประเภท บุคลากรให้ตัวอย่างการฝึกอบรมและรู้จักประเภท ฝึกอบรม และควบคุม classifier ที่ ระยะไกลตรวจภาพจัดวิธีสามารถแบ่งออกเป็นประเภทที่มีและประเภท nonsupervised(1) การจัดประเภทไม่ใช่แบบมีผู้สอน การจัดประเภทกำหนดใด ๆ รู้แรกสุด เพียงขึ้นอยู่กับลักษณะสเปกตรัมของพิกเซล ตามความคล้ายคลึงกันในหลายประเภท วิจัยการใช้อัลกอริทึมซ้ำ Self-Organizing ข้อมูลวิเคราะห์ (ISODATA) เพื่อจัดประเภทกลุ่มพิกเซล(2) มีการจัดประเภท แตกต่างจากประเภท unsupervised เป็นประเภทมีพื้นฐานความรู้แตกต่างจากชนิดต่าง ๆ ตัวอย่างของลักษณะผิวในภาพในการตรวจวัดระยะไกล ตั้งค่าแม่แบบ แล้วใช้รหัสอัตโนมัติ priori ความ กระบวนการขั้นพื้นฐานของการแบ่งประเภทของรูปภาพดังต่อไปนี้:
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
Figure 2. Technical Route
III. DATA PROCESSING AND ANALYSIS RESULTS
A. Multiple Classified methods of Image Interpretation
It should have the same or similar characteristics of spectral and spatial information when the same features in the similar conditions (light, terrain, etc.). on the contrary, different types of surface features has different diversities. According to this difference, all the pixels of the image are divided into several categories based on their nature properties (Class). Regardless of the features’ informational extraction, the dynamic monitoring or the productions of thematic maps and remote sensing images to establish, they all can do without classification. The specific application of computer classification is to identify and classify the features atribute of remote sensing image and It is also the pattern of recognized technology in the field of remote sensing. The purpose of classification is to identify the actual surface features from the image and then to extract information about surface features, the process is that each pixel point or area is attributed to a number of categories in one class actually or several thematic elements in the one, it will complete the twodimensional gray-scale image data from space to the target pattern space.
According to the classification need, personnel provide the training samples and the known category, training and supervising the classifier, remote sensing image classified method can be divided into supervised classification and nonsupervised classification.
(1) Non-Supervised Classification
The classification process does not impose any priori knowledge, It just depends on the pixel’s spectral characteristics, according to the similarity into several categories, the research uses the Iterative Self-Organizing Data Analysis (ISODATA) algorithm to classify a group of
pixels.
(2) Supervised Classification
Different from unsupervised classification, the supervised classification is on the basis of a priori knowledge to distinguish from various types of surface features’ samples on remote sensing images, then set up templates and take automatic identification. The basic process of image classification as shown below:

การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
รูปที่ 2 ผล

เทคนิคการประมวลผลข้อมูลและวิเคราะห์เส้นทาง III A หลายวิธีของการตีความตามภาพ
มันควรมีลักษณะที่เหมือนกันหรือคล้ายกันของสเปกตรัมและข้อมูลเกี่ยวกับอวกาศเมื่อคุณสมบัติเดียวกัน ในเงื่อนไขที่คล้ายกัน ( แสง , ภูมิประเทศ , ฯลฯ ) ในทางตรงกันข้าม ประเภทที่แตกต่างกันของพื้นผิวมีความหลากหลายแตกต่างกัน ตามความแตกต่างนี้ all the pixels of the image are divided into several categories based on their nature properties (Class). Regardless of the features’ informational extraction, the dynamic monitoring or the productions of thematic maps and remote sensing images to establish, they all can do without classification. The specific application of computer classification is to identify and classify the features atribute of remote sensing image and It is also the pattern of recognized technology in the field of remote sensing. The purpose of classification is to identify the actual surface features from the image and then to extract information about surface features, the process is that each pixel point or area is attributed to a number of categories in one class actually or several thematic elements in the one, it will complete the twodimensional gray-scale image data from space to the target pattern space.
According to the classification need, personnel provide the training samples and the known category, training and supervising the classifier,ภาพลับวิธีการระยะไกลสามารถแบ่งออกเป็นหมวดหมู่และประเภทการ nonsupervised .
( 1 ) ไม่มีกระบวนการจัดหมวดหมู่
ไม่กําหนดใด ๆระหว่างความรู้ มันก็ขึ้นอยู่กับลักษณะสเปกตรัมของพิกเซลตามความคล้ายคลึงกันในหลายประเภทการวิจัยใช้วิธีการด้วยตนเองการจัดวิเคราะห์ข้อมูล ( isodata ) โดยแยกกลุ่มของพิกเซล
.
( 2 ) มีการจำแนก
แตกต่างจากการจำแนกโดยขาดการควบคุม ดูแลพื้นที่ บนพื้นฐานของความรู้ priori เพื่อแยกแยะความแตกต่างจากประเภทต่างๆของลักษณะพื้นผิวตัวอย่างบนภาพจากระยะไกล ' , then set up templates and take automatic identification. The basic process of image classification as shown below:

การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: