While concern ecotoxicology began with acute poisoning events in the late 19th century; public concern over the undesirable environmental effects of chemicals arose in the early 1960s with the publication of Rachel Carson′s book, Silent Spring. Shortly thereafter, DDT, originally used to combat malaria, and its metabolites were shown to cause population-level effects in raptorial birds. Initial studies in industrialized countries focused on acute mortality effects mostly involving birds or fish.[5]
Data on pesticide usage remain scattered and/or not publicly available (3). The common practice of incident registration is inadequate for understanding the entirety of effects.[5]
Since 1990, research interest has shifted from documenting incidents and quantifying chemical exposure to studies aimed at linking laboratory, mesocosm and field experiments. The proportion of effect-related publications has increased. Animal studies mostly focus on fish, insects, birds, amphibians and arachnids.[5]
Since 1993, the United States and the European Union have updated pesticide risk assessments, ending the use of acutely toxic organophosphate and carbamate insecticides. Newer pesticides aim at efficiency in target and minimum side effects in nontarget organisms. The phylogenetic proximity of beneficial and pest species complicates the project.[5]
One of the major challenges is to link the results from cellular studies through many levels of increasing complexity to ecosystems.