Crispness, Mechanical and Acoustic Properties of FlakesAs shown by Fig การแปล - Crispness, Mechanical and Acoustic Properties of FlakesAs shown by Fig ไทย วิธีการพูด

Crispness, Mechanical and Acoustic

Crispness, Mechanical and Acoustic Properties of Flakes
As shown by Fig. 9, the mechanical properties measured by this test
cannot fully cope with the mapping issued from the sensory analysis, at least
its first component which is “crispness” (Fig. 5A). This is also reflected by
the low correlation obtained between crispness, evaluated by the first sensory
dimension CVA1, with maximum forces reached during complete compressions
or with slopes of first compression step curves (r2 = 0.4 and 0.6, respectively).
Conversely, all samples belonging to the group of most crispy products
exhibited lower Fmax and Slmin values, which support the relevance of the
mechanical test. The main discrepancy arises from samples G and L, having
very different Fmax and Slmin values, although they belong to the same group
of crispness. They are separated from the other samples by the second sensory dimension, i.e., sensory attributes “sound duration” and “loudness”
(Fig. 5A,B). The average amplitude of acoustic signal, AAS, and the fraction
of peaks of higher amplitude, Rp+, are fairly correlated to the first component
of the sensory analysis which is “crispness” (r2 = 0.63, P = 0.0012 and
r2 = 0.65, P = 0.001, respectively), and suggest that acoustic measurement
may be used for assessment of crispness (Fig. 13). Moreover, the comparison
between Figs. 5A and 10 is encouraging for crispness prediction by an acoutic measurement, even if the analysis in acoustic temporal domain fails into
separating samples G and L from the others. They have AAS and Rp+ values
that are very close to each other, but the sensory analysis clearly separates
these samples from the others in terms of loudness. This limitation may be
due to the speed of biting, which is different from mechanical compression.
Due to the difficulty of simulating human mastication, a more profound
analysis of the possible relation between this sensory dimension and emitted
acoustic signal would require the use of an electronic sensing system that is
directly located on the cheeks and jaws of the panelists, as done by Peng et al.
(2002) for assessing the fracturability of various solid foods. The way fractures
propagate during compression depends on the material structure
(Nicholls et al. 1995), and has an important role in the transmission of vibrations
in the air by acoustic waves. Less crispy products crushing leads to low
frequencies of acoustic signals, like for samples J and E. Moreover, these
samples emitted high-amplitude acoustic signals, while for samples H, K, M
and D, the acoustic emissions are balanced between low and high frequencies,
well split in the studied domain from 1 to 10 kHz.
As previously mentioned, the jaggedness of the signal is often used to
assess “crispness.” This variable was measured for the mechanical signal by
1 - r2), but no significant correlation was found here with CVA1. This apparent
contradiction can first be due to the use of the Kramer cell, which has a
large volume, and that fluctuations are limited by averaging and cushioning
effects. However, the testing volume (about 100 cm3) is close to the one
leading to the largest jaggedness obtained in the study by Nixon and Peleg
(1995). The explanation may rather rely on the fact that, in our study, the
samples only exhibit tiny differences in moisture content (Table 1). In most
studies on crispness of cereal products, the samples are equilibrated at different
moisture contents in order to emphasize the changes of this sensory
property. Thereby, crispness variations and the associated variations of jaggedness
are interpreted by modifications of the temperature of glass transition,
Tg. Differences between mechanical behaviors are mostly due to material
matrix and its components as the amount of glassy starch, or the one of water,
having influenced by lowering the Tg (Attenburrow et al. 1992; Le Meste
et al. 1996). In our case, the samples are all from commercial brands that were
expected to have satisfactory sensory properties, so changes in crispness are
not so significant, although sufficient to be recognized by the sensory panel.
These tinier variations of crispness may not rely on changes of Tg. Texture
behavior cannot be predicted only from the knowledge of the glass transition
temperature alone (Nicholls et al. 1995). Differences on mechanical properties
measured for flakes beds may also be due to the intrinsic properties of
the constitutive material of the flakes. The brittle behavior of starch–zein
systems has been shown not to depend on the Tg of components, but rather on the microstructural morphology of the matrix/particles biopolymer blends
(Chanvrier et al. 2005).
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
คม คุณสมบัติทางกล และเสียงของเกล็ด9 รูป คุณสมบัติทางกลที่วัด โดยการทดสอบนี้เต็มไม่สามารถรับมือกับการแมปที่ออกจากการวิเคราะห์ทางประสาทสัมผัส น้อยส่วนประกอบของครั้งแรกที่ "คม" (รูป 5A) นี้ยังสะท้อนด้วยสหสัมพันธ์ต่ำที่ประมาณความคม ประเมิน โดยครั้งแรกทางประสาทสัมผัสขนาด CVA1 กับกองกำลังสูงสุดถึงระหว่างสมบูรณ์จากหรือ ด้วยความลาดชันของเส้นโค้งขั้นตอนอัดแรก (r2 = 0.4 และ 0.6 ตามลำดับ)ในทางกลับกัน ทุกอย่างที่อยู่ในกลุ่มของผลิตภัณฑ์กรอบสุดแสดง Fmax และ Slmin ค่าที่ต่ำกว่า ซึ่งสนับสนุนความเกี่ยวข้องของการการทดสอบทางกล ความขัดแย้งหลักที่เกิดขึ้นจากตัวอย่าง G และ L มีFmax และ Slmin แตกต่างกันมากค่า แม้ว่าพวกเขาอยู่ในกลุ่มเดียวกันความคมชัด จะถูกแยกออกจากตัวอย่าง โดยประสาทสองมิติ เช่น คุณลักษณะทางประสาทสัมผัส "เสียงระยะเวลา" และ "ความดัง"(รูป 5 a, B) ความกว้างเฉลี่ยของสัญญาณเสียง AAS และเศษส่วนของยอดของคลื่นสูง Rp + มีธรรมความสัมพันธ์ของส่วนประกอบที่แรกการวิเคราะห์ทางประสาทสัมผัสซึ่งเป็น "คม" (r2 = 0.63, P = 0.0012 และr2 = 0.65, P = 0.001 ตามลำดับ), และแนะนำที่วัดอะคูสติกอาจจะใช้สำหรับการประเมินความคม (13 รูป) นอกจากนี้ การเปรียบเทียบระหว่าง 5A มะเดื่อ.และ 10 เป็นสัญญาณที่ดีสำหรับการคาดเดาความคมโดยการวัด acoutic แม้ว่าการวิเคราะห์ในโดเมนที่ขมับเสียงล้มลงแยกตัวอย่าง G และ L จากคนอื่น ๆ AAS และ Rp + ค่าที่อยู่ใกล้กัน แต่แยกการวิเคราะห์ทางประสาทสัมผัสได้อย่างชัดเจนตัวอย่างเหล่านี้จากคนอื่นในแง่ของความดัง ข้อจำกัดนี้อาจเนื่องจากความเร็วในการกัดได้ ซึ่งจะแตกต่างจากกลอัดเนื่องจากความยากของการเลียนแบบมนุษย์ mastication ลึกซึ้งมากขึ้นการวิเคราะห์ความสัมพันธ์ระหว่างมิตินี้ประสาทสัมผัสได้ และปล่อยออกมาสัญญาณเสียงจะต้องมีการใช้ระบบตรวจจับอิเล็กทรอนิกส์ที่โดยตรงอยู่บนแก้มและขากรรไกรของสมาชิก ทำโดย Peng et al(2002) สำหรับการประเมิน fracturability ของอาหารแข็งต่าง ๆ กระดูกหักทางเผยแพร่ในระหว่างการบีบอัดขึ้นกับโครงสร้างวัสดุ(Nicholls et al. 1995), และมีบทบาทสำคัญในการส่งผ่านการสั่นสะเทือนในอากาศโดยคลื่นเสียง น้อยกว่าผลิตภัณฑ์กรอบ บดนำต่ำความถี่ของสัญญาณเสียง เช่นตัวอย่างที่ J และ e นอกจากนี้ เหล่านี้ตัวอย่างจากสัญญาณเสียงคลื่นสูง ในขณะที่ตัวอย่าง H, K, Mและ D ปล่อยเสียงที่มีความสมดุลระหว่างต่ำและความถี่สูงดีแบ่งโดเมนศึกษาจาก 1 ถึง 10 kHzกล่าวว่าก่อนหน้านี้ หยักของสัญญาณจะใช้ประเมิน "ความคม" มีวัดตัวแปรนี้สำหรับสัญญาณทางกลโดย1 - r2), แต่ไม่มีความสัมพันธ์อย่างมีนัยสำคัญพบนี่กับ CVA1 นี้ชัดเจนความขัดแย้งสามารถแรกเนื่องจากการใช้เซลล์ Kramer ซึ่งมีการไดรฟ์ข้อมูลขนาดใหญ่ และความผันผวนที่จะถูกจำกัด โดยเฉลี่ย และกันกระแทกผล อย่างไรก็ตาม เสียงทดสอบ (100 cm3) อยู่ใกล้กับหนึ่งนำแท้ที่ใหญ่ที่สุดที่ได้รับในการศึกษา โดยนิกสันและ Peleg(1995) . คำอธิบายอาจจะอาศัยข้อเท็จจริงที่ ในเรื่องการเรียน การตัวอย่างเท่านั้นมีความแตกต่างเล็ก ๆ ในความชื้น (ตาราง 1) ในที่สุดการศึกษากับความคมของธัญพืช ตัวอย่างเป็น equilibrated ที่แตกต่างกันหาความชื้นเพื่อเน้นการเปลี่ยนแปลงของประสาทนี้คุณสมบัติ จึง ทั้งรูปแบบและแบบที่เกี่ยวข้องแท้แปลความหมาย โดยการปรับเปลี่ยนของอุณหภูมิการเปลี่ยนแก้วTg ความแตกต่างระหว่างพฤติกรรมเชิงกลเป็นส่วนใหญ่เนื่องจากวัสดุเมทริกซ์และส่วนประกอบเป็นจำนวนแป้งที่สะท้อนแสงวิบวับ หรือหนึ่งน้ำมีอิทธิพลลด Tg (Attenburrow et al. 1992 เลอ Mesteet al. 1996) ในกรณีของเรา ตัวอย่างได้จากแบรนด์เชิงพาณิชย์ที่คาดว่าจะมีคุณสมบัติทางประสาทสัมผัสที่น่าพอใจ การเปลี่ยนแปลงในความคมดังนั้นไม่สำคัญเพื่อ แม้ว่าจะเพียงพอที่จะรับรู้ตามประสาทสัมผัสแปลง tinier ของความคมอาจไม่ใช้การเปลี่ยนแปลงของ Tg เนื้อลักษณะการทำงานไม่สามารถคาดเดาจากความรู้ของการเปลี่ยนแก้วเท่านั้นคนเดียวที่อุณหภูมิ (Nicholls et al. 1995) ความแตกต่างในคุณสมบัติทางกลวัดเกล็ดเตียงอาจจะเนื่องจากพื่อเกล็ดวัสดุฯ การทำงานที่เปราะบางของแป้ง – zeinระบบได้รับการแสดงขึ้นไทยประกอบกับ แต่ค่อนข้างบนสัณฐานวิทยาจุลภาคของเมทริกซ์/อนุภาค เมอร์ผสม(Chanvrier et al. 2005)
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: