This study is set apart by its use of high-throughput imaging with automated analysis to identify novel features that would have easily been missed using older technology. Employing a new, standardized phenotyping pipeline and mouse strains of a single specific genetic background called C57BL/6N, the researchers established both the time of embryo death and the nature of the lethal phenotypes for these lines, discovering many novel phenotypes that shed light on the function of these genes. Incorporation of the high-resolution, three-dimensional imaging and automated, computational analysis of the images allowed the team to rapidly gather detailed data, enabling the discovery of new phenotypes at an unprecedented scale.
The Penn team contributed to the bioinformatics analysis of essential genes in humans and showed their relevance to human disease. "The sheer amount of new data reported in this paper is impressive," said co-author Maja Bucan, PhD, a professor of Genetics.
This study is set apart by its use of high-throughput imaging with automated analysis to identify novel features that would have easily been missed using older technology. Employing a new, standardized phenotyping pipeline and mouse strains of a single specific genetic background called C57BL/6N, the researchers established both the time of embryo death and the nature of the lethal phenotypes for these lines, discovering many novel phenotypes that shed light on the function of these genes. Incorporation of the high-resolution, three-dimensional imaging and automated, computational analysis of the images allowed the team to rapidly gather detailed data, enabling the discovery of new phenotypes at an unprecedented scale.The Penn team contributed to the bioinformatics analysis of essential genes in humans and showed their relevance to human disease. "The sheer amount of new data reported in this paper is impressive," said co-author Maja Bucan, PhD, a professor of Genetics.
การแปล กรุณารอสักครู่..