MOSFET Critical Parameters
When switch mode operation of the MOSFET is
considered, the goal is to switch between the
lowest and highest resistance states of the device
in the shortest possible time. Since the practical
switching times of the MOSFETs (~10ns to 60ns)
is at least two to three orders of magnitude longer
than the theoretical switching time (~50ps to
200ps), it seems important to understand the
discrepancy. Referring back to the MOSFET
models in Figure 2, note that all models include
three capacitors connected between the three
terminals of the device. Ultimately, the switching
performance of the MOSFET transistor is
determined by how quickly the voltages can be
changed across these capacitors.
Therefore, in high speed switching applications,
the most important parameters are the parasitic
capacitances of the device. Two of these
capacitors, the CGS and CGD capacitors
correspond to the actual geometry of the device
while the CDS capacitor is the capacitance of the
base collector diode of the parasitic bipolar
transistor (body diode).
The CGS capacitor is formed by the overlap of the
source and channel region by the gate electrode.
Its value is defined by the actual geometry of the
regions and stays constant (linear) under different
operating conditions.
The CGD capacitor is the result of two effects.
Part of it is the overlap of the JFET region and
the gate electrode in addition to the capacitance
of the depletion region which is non-linear. The
equivalent CGD capacitance is a function of the
drain source voltage of the device approximated
by the following formula: