Tez is a proposal to develop a generic application which can be used to process complex data-processing task DAGs and runs natively on Apache Hadoop YARN. Tez generalizes the MapReduce paradigm to a more powerful framework based on expressing computations as a dataflow graph. Tez is not meant directly for end-users – in fact it enables developers to build end-user applications with much better performance and flexibility. Hadoop has traditionally been a batch-processing platform for large amounts of data. However, there are a lot of use cases for near-real-time performance of query processing. There are also several workloads, such as Machine Learning, which do not fit will into the MapReduce paradigm. Tez helps Hadoop address these use cases. Tez framework constitutes part of Stinger initiative (a low latency based SQL type query interface for Hadoop based on Hive).
Data analytics cluster computing framework originally developed in the AMPLab at UC Berkeley. Spark fits into the Hadoop open-source community, building on top of the Hadoop Distributed File System (HDFS). However, Spark provides an easier to use alternative to Hadoop MapReduce and offers performance up to 10 times faster than previous generation systems like Hadoop MapReduce for certain applications.
Spark is a framework for writing fast, distributed programs. Spark solves similar problems as Hadoop MapReduce does but with a fast in-memory approach and a clean functional style API. With its ability to integrate with Hadoop and inbuilt tools for interactive query analysis (Shark), large-scale graph processing and analysis (Bagel), and real-time analysis (Spark Streaming), it can be interactively used to quickly process and query big data sets.
To make programming faster, Spark provides clean, concise APIs in Scala, Java and Python. You can also use Spark interactively from the Scala and Python shells to rapidly query big datasets. Spark is also the engine behind Shark, a fully Apache Hive-compatible data warehousing system that can run 100x faster than Hive.
Spark SQL unifies access to structured data.
MLlib is Apache Spark's scalable machine learning library.
Spark Streaming makes it easy to build scalable fault-tolerant streaming applications.
Tez is a proposal to develop a generic application which can be used to process complex data-processing task DAGs and runs natively on Apache Hadoop YARN. Tez generalizes the MapReduce paradigm to a more powerful framework based on expressing computations as a dataflow graph. Tez is not meant directly for end-users – in fact it enables developers to build end-user applications with much better performance and flexibility. Hadoop has traditionally been a batch-processing platform for large amounts of data. However, there are a lot of use cases for near-real-time performance of query processing. There are also several workloads, such as Machine Learning, which do not fit will into the MapReduce paradigm. Tez helps Hadoop address these use cases. Tez framework constitutes part of Stinger initiative (a low latency based SQL type query interface for Hadoop based on Hive).
Data analytics cluster computing framework originally developed in the AMPLab at UC Berkeley. Spark fits into the Hadoop open-source community, building on top of the Hadoop Distributed File System (HDFS). However, Spark provides an easier to use alternative to Hadoop MapReduce and offers performance up to 10 times faster than previous generation systems like Hadoop MapReduce for certain applications.
Spark is a framework for writing fast, distributed programs. Spark solves similar problems as Hadoop MapReduce does but with a fast in-memory approach and a clean functional style API. With its ability to integrate with Hadoop and inbuilt tools for interactive query analysis (Shark), large-scale graph processing and analysis (Bagel), and real-time analysis (Spark Streaming), it can be interactively used to quickly process and query big data sets.
To make programming faster, Spark provides clean, concise APIs in Scala, Java and Python. You can also use Spark interactively from the Scala and Python shells to rapidly query big datasets. Spark is also the engine behind Shark, a fully Apache Hive-compatible data warehousing system that can run 100x faster than Hive.
Spark SQL unifies access to structured data.
MLlib is Apache Spark's scalable machine learning library.
Spark Streaming makes it easy to build scalable fault-tolerant streaming applications.
การแปล กรุณารอสักครู่..