The statistical analyses were realized by the software R (R Core Team, 2014). To determine the lower and the upper critical concentration for RG, RFI, FGR, PER, RCP and RE, a segmental linear regression analysis was used. For the variables iLW and final individual LW, FCF, HSI and blood pH (several values per tank) the data evaluation started
with the definition of an appropriate statistical mixed model (Laird and Ware, 1982; Verbeke and Molenberghs, 2000). This model included all treatments (diet nos. 1–9) as fixed factor. Tank was regarded as random factor. For the variable SAH, all variables for total body composition, and all ADC (one value per tank) a simple linear model was used, including the treatments as fixed factor. The data were assumed to be normally distributed and to be homoscedastic, based on a graphical residual analysis. Analyses of variances (ANOVA) and multiple contrast tests (e.g.: Bretz et al., 2011) were conducted in order to compare the treatment effects. Effects of sampling method or diet on the ADCs were conducted via 2-way ANOVA. All other parameters were analyzed via 1-way ANOVA. P ≤ 0.05 was defined as the level of significance.
The lower and the upper critical concentrations, plateau and slopes were classified by ±standard error (s.e.). All remaining data are presented as arithmetic mean values ± standard deviation (s.d.).
วิเคราะห์ทางสถิติได้รับรู้ โดยซอฟต์แวร์ R (R Core ทีม 2014) กำหนดด้านล่างและความเข้มข้นวิกฤตบน RG, RFI, FGR ต่อ RCP และ กลับ มีใช้การวิเคราะห์ถดถอยเชิงเส้นงานติด segmental ตัวแปร iLW และสุดท้ายละ LW, FCF, HSI และเลือด pH (มูลค่าหลายถัง) การประเมินข้อมูลเริ่มต้นมีการกำหนดรุ่นเหมาะสมทางสถิติผสม (Laird และพัสดุ 1982 Verbeke และ Molenberghs, 2000) รุ่นนี้รวมการรักษาทั้งหมด (อาหารชุด 1-9) เป็นปัจจัยคงที่ ถังถูกถือเป็นตัวสุ่ม SAH ตัวแปร ตัวแปรทั้งหมดสำหรับองค์ประกอบของร่างกายทั้งหมด และทั้งหมด ADC (หนึ่งค่าต่อถัง) แบบเชิงเส้นอย่างง่ายที่ใช้ รวมถึงการรักษาเป็นปัจจัยคงที่ ข้อมูลถือว่าปกติจะกระจาย และ homoscedastic ขึ้นอยู่กับการวิเคราะห์ภาพที่เหลือ วิเคราะห์ผลต่าง (การวิเคราะห์ความแปรปรวน) และทดสอบความแตกต่างหลาย (เช่น: Bretz et al., 2011) ได้ดำเนินการเปรียบเทียบผลการรักษา ผลของวิธีการสุ่มตัวอย่างหรืออาหาร ADCs ได้ดำเนินการผ่าน 2 วิธีการวิเคราะห์ความแปรปรวน พารามิเตอร์อื่น ๆ ทั้งหมดถูกวิเคราะห์ผ่านวิธีที่ 1 การวิเคราะห์ความแปรปรวน P ≤ 0.05 ถูกกำหนดเป็นระดับของความสำคัญล่างและตัวบนสำคัญความเข้มข้น ที่ราบสูง และลาดถูกประเภทข้อผิดพลาด ±standard (s.e.) มีแสดงข้อมูลทั้งหมดที่เหลือเป็นค่าเฉลี่ยเลขคณิตค่า±ส่วนเบี่ยงเบนมาตรฐาน (s.d.)
การแปล กรุณารอสักครู่..

การวิเคราะห์ทางสถิติได้ตระหนักถึงโดยซอฟต์แวร์อาร์ (ทีม R แกน 2014) เพื่อตรวจสอบการลดลงและความเข้มข้นที่สำคัญบนสำหรับ RG, RFI, FGR, ต่อ, RCP และเรื่องการวิเคราะห์การถดถอยเชิงเส้นปล้องถูกนำมาใช้ สำหรับ ILW ตัวแปรและบุคคลสุดท้าย LW, FCF, HSI และค่า pH ในเลือด (ค่าหลายต่อถัง)
การประเมินผลข้อมูลที่เริ่มต้นด้วยความหมายของรูปแบบการผสมที่เหมาะสมทางสถิติ(สกอตแลนด์และสุขภัณฑ์ 1982; Verbeke และ Molenberghs, 2000) รุ่นนี้รวมถึงการรักษาทั้งหมด (Nos อาหาร. 1-9) เป็นปัจจัยคงที่ รถถังได้รับการยกย่องเป็นปัจจัยสุ่ม สำหรับ SAH ตัวแปรตัวแปรทั้งหมดองค์ประกอบของร่างกายทั้งหมดและทุก ADC (หนึ่งค่าต่อถัง) รูปแบบเชิงเส้นอย่างง่ายที่ใช้รวมทั้งการรักษาเป็นปัจจัยคงที่ ข้อมูลสันนิษฐานว่าจะกระจายตามปกติและจะเป็น homoscedastic บนพื้นฐานของการวิเคราะห์แบบกราฟิกที่เหลือ การวิเคราะห์ความแปรปรวน (ANOVA) และการทดสอบความคมชัดหลาย ๆ (เช่น:. Bretz et al, 2011) ได้ดำเนินการเพื่อเปรียบเทียบผลการรักษา ผลของวิธีการสุ่มตัวอย่างอาหารหรือใน ADCs ได้ดำเนินการผ่านทาง 2-way ANOVA พารามิเตอร์อื่น ๆ ทั้งหมดถูกนำมาวิเคราะห์ผ่าน 1 way ANOVA P ≤ 0.05 ถูกกำหนดเป็นระดับของความสำคัญ.
ที่ต่ำกว่าและความเข้มข้นที่สำคัญบนที่ราบสูงและความลาดชันโดยจำแนกตาม±ข้อผิดพลาดมาตรฐาน (SE) ข้อมูลทั้งหมดที่เหลือจะถูกนำเสนอเป็นค่าเฉลี่ยค่าส่วนเบี่ยงเบนมาตรฐาน± (SD)
การแปล กรุณารอสักครู่..
