Introduction
In the October 2008 issue of Current Opinion in Biotechnology a number of reviews were devoted to illustrate how today’s biotechnology may contribute to provide sustainable energy supplies, to fight global warming and pollution, and play a major role in food and health issues [1 ]. Impressive progress has been made with respect to metabolic engineering of heterotrophic microorganisms like Escherichia coli [2 ] and Clostridia [3 ], and the same is true for the employment of photosynthetic (micro)organisms as a platform for the production of energy-rich compounds [4,5 ]. Photosynthetic life forms have attracted enormous interest as vehicles to capture light energy and subsequently convert that into the free energy of organic compounds, using water as the ultimate electron donor. Currently, two major technologies are employed with phototrophic organisms: first, plant-based biofuel production via fermentation of its sugar content to ethanol and, be it to a much lesser extent, second, algae derived biodiesel production through lipid extraction of biomass from large-scale cultures. The pros and cons of these first-generation and second-generation biofuel production platforms have been discussed extensively in political, economic as well as technological context and will not be reviewed here. Suffice it to say that what transpires through all publications on this issue is the consensus that in view of the many adverse effects of the use of fossil fuels and the negative effects of first-generation and second-generation technologies [6,7], the scientific community should continue to seek for even more sustainable forms of biofuel production.
A technology that would employ engineered microorganisms as catalytic units, producing biofuels extracellularly in an essentially continuous process, would not suffer from the many disadvantages encountered with the current technologies. Compared to heterotrophic fermentative platforms that start from high energy substrates like sugars, the use of a production organism that feeds on solar energy, water, and CO2, would yield an enormous gain in energetic efficiency of the overall process. Here, we propose that cyanobacteria, that is oxygenic photosynthetic prokaryotes, are the cell factories of choice for such applications, as they are easily cultivable with little nutritional demands for the production of organic biofuels and of hydrogen. Both applications will be discussed separately below.
แนะนำIn the October 2008 issue of Current Opinion in Biotechnology a number of reviews were devoted to illustrate how today’s biotechnology may contribute to provide sustainable energy supplies, to fight global warming and pollution, and play a major role in food and health issues [1 ]. Impressive progress has been made with respect to metabolic engineering of heterotrophic microorganisms like Escherichia coli [2 ] and Clostridia [3 ], and the same is true for the employment of photosynthetic (micro)organisms as a platform for the production of energy-rich compounds [4,5 ]. Photosynthetic life forms have attracted enormous interest as vehicles to capture light energy and subsequently convert that into the free energy of organic compounds, using water as the ultimate electron donor. Currently, two major technologies are employed with phototrophic organisms: first, plant-based biofuel production via fermentation of its sugar content to ethanol and, be it to a much lesser extent, second, algae derived biodiesel production through lipid extraction of biomass from large-scale cultures. The pros and cons of these first-generation and second-generation biofuel production platforms have been discussed extensively in political, economic as well as technological context and will not be reviewed here. Suffice it to say that what transpires through all publications on this issue is the consensus that in view of the many adverse effects of the use of fossil fuels and the negative effects of first-generation and second-generation technologies [6,7], the scientific community should continue to seek for even more sustainable forms of biofuel production.เทคโนโลยีที่จะจ้างวิศวกรรมจุลินทรีย์เป็นหน่วยตัวเร่งปฏิกิริยา การผลิตเชื้อเพลิงชีวภาพในกระบวนการต่อเนื่องเป็นหลัก extracellularly จะไม่ประสบพบกับเทคโนโลยีปัจจุบันข้อเสียมากมาย เมื่อเทียบกับแพลตฟอร์ม fermentative heterotrophic ที่เริ่มจากพื้นผิวการพลังงานสูงเช่นน้ำตาล การใช้ชีวิตผลิตที่ตัวดึงข้อมูลในพลังงานแสงอาทิตย์ น้ำ และ CO2 จะผลตอบแทนเป็นกำไรมหาศาลในมีพลังประสิทธิภาพของกระบวนการโดยรวม ที่นี่ เราเสนอ cyanobacteria ที่เป็น oxygenic photosynthetic prokaryotes โรงงานเซลล์ที่เลือกสำหรับการใช้งานดังกล่าว พวกเขาเป็น cultivable ได้ ด้วยความต้องการทางโภชนาการน้อยสำหรับการผลิตเชื้อเพลิงชีวภาพอินทรีย์ และไฮโดรเจน จะกล่าวถึงโปรแกรมประยุกต์ทั้งสองแยกต่างหากด้านล่าง
การแปล กรุณารอสักครู่..
