Microalgae are photosynthetic unicellular microorganisms
capable of converting sunlight, water, and carbon dioxide to algal
biomass. Their high photosynthetic rates enable microalgae to
serve as an effective carbon capture platform while rapidly accumulating
lipids in their biomass. Even in a conservative scenario,
microalgae are predicted to produce about 10 times more biodiesel
per unit area of land than a typical terrestrial oleaginous crop [1–4].
Since microalgal species can be cultured on non-arable land, the
production of algal biomass does not place additional strains on
food production [5]. For these reasons, microalgae are currently
considered some of the most promising alternative sources for biodiesel
feedstock [3].
Traditionally, lipids have been extracted from biological matrices
using a combination of chloroform, methanol, and water through Bligh and Dyer’s method [6]. Indeed, this method has been
used as a benchmark for comparing solvent extraction methods.
However, it has several disadvantages when used on a large scale
because it generates significant quantities of waste solvent.
Organic solvent is costly to recycle and can be unsafe to handle
in large amounts [7]. Therefore, although Bligh and Dyer’s method
has proven effective for the majority of microalgal lipid extractions,
an alternative organic solvent extraction method is needed
for larger scale use [8]. Hexane is the most common solvent of
choice for large-scale lipid extractions due to its cost-effectiveness.
When extracting lipids from microalgae, hexane is less toxic than
chloroform, has minimal affinity towards non-lipid contaminants
and has higher selectivity towards neutral lipid fractions that can
be converted to biodiesel using existing technology [9,10]. The
use of hexane alone for high yield lipid extractions from microalgae
would be a more economical and environmentally friendly
process for biodiesel production. Unfortunately, hexane has been
reported to be less efficient than chloroform-based solvent mixtures
for microalgal lipid extractions [9–11].
When the temperature and pressure of fluids are raised over
their critical points, fluids enter the supercritical region and demonstrate
unique properties of both the liquid and gas phases. A
supercritical fluid possesses a density close to that of a liquid and
has the ability to dissolve many components. Simultaneously, the
high diffusivity and low viscosity of supercritical fluids enable
them to behave in a manner similar to gas. Due to these advantages,
supercritical fluids appear well suited for use as extraction
media. Indeed, lipid extractions using supercritical carbon dioxide
have recently been studied extensively for biodiesel production
from microalgae [8,12,13]. Based on these considerations, in this
work lipid extraction from Scenedesmus microalgae was evaluated
using hot compressed hexane (HCH) in sub- and supercritical conditions.
Crude lipid yield and the fatty acid methyl ester (FAME)
yield obtained from HCH extracts were compared with those
obtained using hexane extraction at ambient conditions and with
the Bligh and Dyer extraction method. Soxhlet extraction, which
is considered a baseline for the comparison of lipid extraction
methods, was also tested near the boiling point of hexane
สาหร่ายเซลล์เดียวเป็นจุลินทรีย์สังเคราะห์แสง
ความสามารถในการแปลงแสงแดด น้ำ และคาร์บอนไดออกไซด์ปริมาณมวลชีวภาพของสาหร่าย
ของอัตราการสังเคราะห์แสงสูงช่วยให้สาหร่าย
เป็นแพลตฟอร์มที่มีประสิทธิภาพคาร์บอนจับภาพขณะอย่างรวดเร็วสะสม
ไขมันในมวลชีวภาพของพวกเขา แม้ในสถานการณ์อนุลักษณ์ ,
สาหร่ายขนาดเล็กที่คาดว่าจะผลิตได้ประมาณ 10 กว่าครั้ง ไบโอดีเซล
ต่อหน่วยพื้นที่ของที่ดินมากกว่าปกติบกที่ผสมด้วยน้ำมันพืช [ 1 – 4 ] .
เนื่องจากสามารถเพาะเลี้ยงสาหร่ายชนิดที่ไม่มีที่ดินเพาะปลูก ,
การผลิตมวลชีวภาพของสาหร่ายไม่วางสายพันธุ์เพิ่มเติมเกี่ยวกับ
การผลิตอาหาร [ 5 ] ด้วยเหตุผลเหล่านี้ คาดว่ากำลัง
ถือว่าบางส่วนของแนวโน้มมากที่สุดทางเลือกแหล่งวัตถุดิบใหม่ๆ
ผ้า [ 3 ]ไขมันได้ถูกสกัดจากเมทริกซ์ชีวภาพ
โดยใช้การรวมกันของคลอโรฟอร์ม เมทานอลและน้ำที่ผ่านการประเมินของ Dyer ) [ 6 ] แน่นอน วิธีการนี้ได้รับ
ใช้เป็นมาตรฐานสำหรับการเปรียบเทียบวิธีสกัดตัวทำละลาย .
แต่ก็มีข้อเสียหลายเมื่อใช้กับ
ขนาดใหญ่เพราะมันสร้างปริมาณสําคัญตัวทําละลาย
ของเสียตัวทำละลายอินทรีย์ที่เป็นค่าใช้จ่ายในการรีไซเคิลและสามารถจะไม่ปลอดภัยกับ
ในปริมาณมาก [ 7 ] ดังนั้น แม้ว่าการประเมิน Dyer วิธีการ
ได้พิสูจน์ประสิทธิภาพสำหรับส่วนใหญ่ของไขมันในสาหร่ายสกัด
เลือกตัวทำละลายอินทรีย์วิธีสกัดจำเป็น
สำหรับขนาดใหญ่ใช้ [ 8 ] เฮกเซนเป็นตัวทำละลาย ที่พบมากที่สุดของทางเลือกสำหรับการสกัดไขมันขนาดใหญ่
เนื่องจากความคุ้มค่าเมื่อสกัดไขมันจากสาหร่ายขนาดเล็การเป็นพิษน้อยกว่า
คลอโรฟอร์ม มีความสัมพันธ์ที่ไม่ปนเปื้อนน้อยที่สุดต่อไขมันและมีอุดมการต่อ
ส่วนไขมันที่เป็นกลางที่สามารถถูกแปลงเป็นไบโอดีเซลโดยใช้เทคโนโลยีที่มีอยู่ [ 9,10 ]
ใช้เฮกเซนคนเดียวเพื่อผลผลิตสูงและการสกัดจากสาหร่ายขนาดเล็ก
จะประหยัดและเป็นมิตรกับสิ่งแวดล้อม
กระบวนการสำหรับการผลิตไบโอดีเซล ขออภัย เฮกเซน ได้รับรายงานจะมีประสิทธิภาพน้อยกว่า
สำหรับผสมตัวทำละลายคลอโรฟอร์มใช้สาหร่ายสกัดไขมัน [ 9 – 11 ] .
เมื่ออุณหภูมิและความดันของของเหลวที่ถูกยกขึ้นเหนือ
จุดวิกฤตของของเหลวเข้าสู่เขตวิกฤต และสาธิต
คุณสมบัติเฉพาะของทั้ง ของเหลว และก๊าซระยะ
เป็นของไหลภาวะเหนือวิกฤตมีคุณสมบัติใกล้เคียงกับความหนาแน่นของของเหลวและ
มีความสามารถที่จะละลายส่วนประกอบหลายอย่าง พร้อมกัน
อุณหภูมิสูงและมีความหนืดต่ำของของไหลยิ่งยวดให้
ให้ประพฤติในลักษณะที่คล้ายคลึงกับก๊าซ เนื่องจากประโยชน์เหล่านี้
- ของเหลวปรากฏเหมาะสำหรับใช้เป็นสื่อด้วย
แน่นอนในการสกัดโดยใช้คาร์บอนไดออกไซด์เหนือวิกฤต
เพิ่งได้รับการศึกษาอย่างกว้างขวางสำหรับ
การผลิตไบโอดีเซลจากสาหร่ายขนาดเล็ก [ 8,12,13 ] ขึ้นอยู่กับการพิจารณาเหล่านี้ในงานนี้
การสกัดไขมันจากสาหร่ายขนาดเล็กถูกประเมิน
ซีนเดสมัส โดยใช้เฮกเซนร้อนอัด ( HCH ) ในแขวงและเงื่อนไขวิกฤต .
ผลผลิตไขมันดิบและกรดไขมันเมทิลเอสเทอร์ ( ชื่อเสียง ) ผลผลิตที่ได้จากสารสกัดถูก
HCH เทียบ กับ ผู้ที่ได้ใช้สกัดเฮกเซนที่สภาวะแวดล้อมและการประเมินวิธีการสกัด Dyer
. การสกัดไขมัน , ซึ่ง
ถือว่าพื้นฐานสำหรับการเปรียบเทียบวิธีสกัด
ไขมันยังทดสอบใกล้จุดเดือดของน้ำ
การแปล กรุณารอสักครู่..
