6. Recent technological advances
6.1. Current industrial status
Olah et al. (2011)discussed the current industrial status of
methanol production from CO2; this state-of-art is represented here. A major milestone was achieved when Lurgi
AG and Sud–Chemie together developed a highly active and
selective catalyst for producing methanol from CO2 and H2
atT= 260
◦
C. The activity of this catalyst decreased at about
the same rate as the activity of the commercial methanol
synthesis catalyst (Goehna and Koenig, 1994). In another
major development, the first pilot plant for the production of
methanol (50 kg/h) from CO2and H2was built in Japan using a
SiO2-modified Cu/ZnO catalyst. Recycling the feed produced a
space-time yield of methanol around 600 g/(L h), with 99.9%
selectivity over 8000 h operation at 250
◦
C and 5 MPa (Saito,
1998). Yet another pilot plant producing methanol from CO2
and H2 with an annual capacity of 100 tonnes is being built
by Mitsui Chemicals in Japan. To accomplish this target, H2
will be generated by photochemical splitting of water using
solar energy (Tremblay, 2008). For the first time, a liquid-phase
methanol synthesis process was also developed, which allows
aCO2and H2conversion to methanol of about 95% with very
high selectivity in a single pass (Air Products, 2003). Then, the
first commercial CO2to methanol recycling plant using locally
available cheap geothermal energy is presently being built
after successful pilot plant scale operation in Iceland by the
company Carbon Recycling International. This plant is based
on the conversion of CO2, a significant by-product accompanying local geothermal energy sources or industrial sources
(aluminium production). H2is produced by water electrolysis
(vide infra) (Shulenberger et al., 2007).
The technical feasibility of methanol production from CO2
has also been demonstrated in pilot plants using a two-step
approach, viz. KIST (CAMERE) process (reverse WGS separate from methanol synthesis) or a single step approach proposed
by NIRE/RITE (the two stages integrated in a single reactor)
(Centi et al., 2008). The first approach seems preferable in
terms of higher catalyst productivity, lower gas recycle and
reactor size (Centi and Perathoner, 2009).
Very recently, researchers at the Institute of Bioengineering
and Nanotechnology (IBN) in Singapore used organocatalysts
to activate CO2in a mild and non-toxic process for producing
methanol. Certainly, all these developments are very encouraging.
6. ความก้าวหน้าทางเทคโนโลยีล่าสุด
6.1 สถานะปัจจุบันอุตสาหกรรม
Olah et al, (2011)
กล่าวถึงสถานะปัจจุบันของอุตสาหกรรมการผลิตเมทานอลจากCO2; รัฐของศิลปะนี้จะแสดงที่นี่ ก้าวที่สำคัญก็ประสบความสำเร็จเมื่อ Lurgi
AG และ Sud-Chemie
ร่วมกันพัฒนาใช้งานสูงและตัวเร่งปฏิกิริยาเลือกสำหรับการผลิตเมทานอลจากCO2 และ H2
ATT = 260 ◦ซี การทำงานของตัวเร่งปฏิกิริยานี้ลดลงที่เกี่ยวกับอัตราเดียวกับการทำงานของเมทานอลในเชิงพาณิชย์เร่งปฏิกิริยาการสังเคราะห์(Goehna และนิก, 1994) อีกการพัฒนาที่สำคัญที่โรงงานนำร่องครั้งแรกสำหรับการผลิตของเมทานอล(50 กิโลกรัม / เอช) จาก CO2and H2was สร้างขึ้นในประเทศญี่ปุ่นใช้SiO2 แก้ไข Cu / ZnO ตัวเร่งปฏิกิริยา รีไซเคิลฟีดผลิตผลผลิตพื้นที่เวลาของเมทานอลประมาณ 600 กรัม / (L เอช) กับ 99.9% เลือกมากกว่า 8000 ชั่วโมงการดำเนินงานที่ 250 ◦ซีและ 5 เมกะปาสคาล (ไซโตะ, 1998) แต่โรงงานต้นแบบผลิตเมทานอลอีกจาก CO2 และ H2 มีกำลังการผลิตปีละ 100 ตันจะถูกสร้างขึ้นโดยบริษัท มิตซุยสารเคมีในประเทศญี่ปุ่น เพื่อให้บรรลุเป้าหมายนี้ H2 จะถูกสร้างขึ้นโดยแยกแสงของน้ำโดยใช้พลังงานแสงอาทิตย์ (Tremblay 2008) เป็นครั้งแรกที่เป็นของเหลวเฟสเมทานอลในกระบวนการสังเคราะห์นอกจากนี้ยังได้รับการพัฒนาซึ่งจะช่วยให้aCO2and H2conversion ไปเมทานอลประมาณ 95% ที่มีมากหัวกะทิสูงในการผ่านเดียว(แอร์โปรดักส์, 2003) จากนั้นCO2to เชิงพาณิชย์แห่งแรกโรงงานรีไซเคิลโดยใช้เมทานอลในประเทศพลังงานความร้อนใต้พิภพราคาถูกที่มีอยู่ในปัจจุบันถูกสร้างขึ้นหลังจากการดำเนินการโรงงานนำร่องที่ประสบความสำเร็จในระดับประเทศไอซ์แลนด์โดยบริษัท คาร์บอนรีไซเคิลนานาชาติ โรงงานแห่งนี้จะขึ้นอยู่กับการเปลี่ยนแปลงของ CO2 ที่มีนัยสำคัญโดยผลิตภัณฑ์ที่มาพร้อมกับความร้อนใต้พิภพแหล่งพลังงานในท้องถิ่นหรือแหล่งอุตสาหกรรม (การผลิตอลูมิเนียม) H2is ผลิตโดยกระแสไฟฟ้าน้ำ(วิเดอินฟา) (Shulenberger et al., 2007). ความเป็นไปได้ทางเทคนิคของการผลิตเมทานอลจาก CO2 นอกจากนี้ยังได้รับการพิสูจน์ในโรงงานนำร่องใช้สองขั้นตอนวิธีการ ได้แก่ KIST (Camere) กระบวนการ (ย้อนกลับสักคนที่แยกต่างหากจากการสังเคราะห์เมทานอล) หรือวิธีการขั้นตอนเดียวที่นำเสนอโดยNire / RITE (ทั้งสองขั้นตอนรวมอยู่ในเครื่องปฏิกรณ์เดี่ยว) (Centi et al., 2008) วิธีแรกดูเหมือนว่าดีกว่าในแง่ของการผลิตตัวเร่งปฏิกิริยาที่สูงขึ้นรีไซเคิลก๊าซที่ลดลงและขนาดของเครื่องปฏิกรณ์(Centi และ Perathoner 2009). มากเมื่อเร็ว ๆ นี้นักวิจัยที่สถาบันวิศวกรรมชีวภาพและนาโนเทคโนโลยี(ไอบี) ในสิงคโปร์ใช้ organocatalysts เพื่อเปิดใช้งาน CO2in อ่อนและ กระบวนการที่ปลอดสารพิษในการผลิตเมทานอล แน่นอนว่าการพัฒนาทั้งหมดเหล่านี้เป็นกำลังใจที่ดี
การแปล กรุณารอสักครู่..