Measure Accuracy if You Want to Control of Reliability
When a reliability standard is set (another name for it is a quality standard), for example our two shafts must be aligned to within 0.05 mm (0.002") from the start of one to the end of the other, you introduce something that can be measured. The measurement tells you how accurate, how close to the standard, you are and what you need to do to adjust the situation so you do achieve the required precision.
With a means to measure accuracy you will always get the precision you require. If you have wisely chosen the right standards to guarantee precision, then measurement creates a way to control your process, your equipment and your workforce's efforts that automatically produce a quality product consistently, reliably and repeatedly.
If you do this with every aspect of your operation you will remove any guess-work, you will give people targets to work to and a means to test accuracy. You will provide guidance for the operation. You will find people take ownership for meeting the targets. Humans are a goal-driven species. When you give your people goals they will work hard to meet them. Using the precision principle means that you have a vehicle that in time lets you reach the goals.
Once the accuracy is continually met set more precise standards, and in time they too will be met.
How to Set or Determine the Limits to Work Within
Where do you go to find the appropriate standards to apply in your operation? Most times the standards were set at the design stage and you only need to get the design standards and use them to measure your current performance.
In the case of machinery and equipment the standards are set by its engineering design. You only need to insure that the same standards are being used and met during its operating life. Are the shafts aligned to sufficient accuracy? Are the bearings lubricated correctly, with the right grease and the right amount, at the right frequency? Is the frame distorting so badly that the internal components no longer run within their designed tolerance? Engineering standards are easy to apply, to check and to prove they are done accurately during operation.
It is harder to set standards for a process. But it can be done. In an industrial process there are tell-tale signs of when it is performing correctly and there are tell-tale signs of when it is not. You must determine what causes the tell-tale signs and then set standards and tolerances to measure the influencing factors and keep them under control before they affect the process.
Take an example of a process liquid filter. When there is too much material build-up on the filter screen it will reduce the flow through the filter. A pressure difference arises between the upstream-pressure and the down-stream pressure as the material thickens on the screen. The difference in pressure across the filter is a tell-tale sign of material build-up.
You can use the pressure difference to control the accuracy of the flow through the filter. By setting an upper and lower limit, or tolerance range, in which to operate the filter you can determine the appropriate time to clean the screen with minimal disruption to the process.
You can even go one step further and use the filter cake thickness on the screen to act as a tell-tale sign of other process problems. Here is a real example.
The flow through a horizontal leaf filter mysteriously fell to 25% of full flow with no observable cause. When the filter cake was examined it was noted that it was not the usual thickness that historically caused that much pressure difference. Investigations into the operation found that slimes produced during production, which were usually removed from the process, had not been remove because there was no place to put them. The presence of the slimes acted to blind the filter cake and so a thinner cake was able to cause the same pressure loss as the normally thicker cake without the slimes present.
In this case the filter cake thickness was a tell-tale of a process operating normally or one out of control. The cake thickness became another standard and measure to be used to control the process. If the cake was not thick enough after a certain time in service, or throughput, it meant that the ratio of slimes in the process was too great and they had to be removed to start fresh.
You can find and then specify standards and tolerances in the same way for all your process.
The Tolerance Range
Once a standard is set you must also set acceptable limits either side of it that allow you some range for management. The tolerance limits are set tight enough to insure sufficient accuracy so that precision operation is maintained. The tolerances are determined from the engineering design or from the difference between acceptable normal and unacceptable abnormal performance.
For example to say that our two shafts must always be perfectly inline is nonsense. Perfect alignment is not humanly achievable with current technologies. Even if the alignment was perfect before start-up it would not be perfect after reaching running temperature. Hence we set a tolerance of 0.05 mm (0.002") from end to end at operating temperature and accept the accuracy as adequate if the final measurement is within tolerance.
To align the shafts to that accuracy requires laser alignment equipment, the right procedure and a control chart on which the measurements are recorded. The orientation of the shafts are adjusted until the measurements are within the control chart limits.
In the case of our filter screen we set a maximum pressure difference of say 200 kPa (2 bar, 30 psi) and a minimum of 100 kPa within which the filter screen must be cleaned. So the screen is cleaned after the pressure difference measures 100 kPa but before it gets to 200 kPa. This allows the operators some flexibility to do the cleaning at a time that minimises production disruption. When they clean the filter they also take a cake thickness sample and check it against thickness tolerance to determine if slimes are starting to become a problem.
Can you see how being precise keeps you in control of situations and stops problems happening?
Control Chart the Performance
It is best to be able to view how progress is going. This requires developing an image of the situation so you know if you are on track or not. Most simply this is done with either comparison tables, graphs, quality control charts or the like. The simpler the charting device the better, as long as it also is sufficiently accurate to give you the precision you need to keep control.
On the master chart you put down the standard required and the tolerance limits either side of it which are acceptable. You then take measurements from the actual operation, process or action and plot those against the master chart. So long as the actual results are within tolerance you are in control. When they show a trend toward loss of control, or are outside the tolerance limits, you have accurate information to make the decision to alter, change or stop the process or operation.