Orthogonal frequency-division multiplexing (OFDM) is a method of encoding digital data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL Internet access, wireless networks, powerline networks, and 4G mobile communications.
OFDM is a frequency-division multiplexing (FDM) scheme used as a digital multi-carrier modulation method. A large number of closely spaced orthogonal sub-carrier signals are used to carry data on several parallel data streams or channels. Each sub-carrier is modulated with a conventional modulation scheme (such as quadrature amplitude modulation or phase-shift keying) at a low symbol rate, maintaining total data rates similar to conventional single-carrier modulation schemes in the same bandwidth.
Summary of advantages
- High spectral efficiency as compared to other double sideband modulation schemes, spread spectrum, etc.
- Can easily adapt to severe channel conditions without complex time-domain equalization.
- Robust against narrow-band co-channel interference.
- Robust against intersymbol interference (ISI) and fading caused by multipath propagation.
- Efficient implementation using Fast Fourier Transform (FFT).
- Low sensitivity to time synchronization errors.
- Tuned sub-channel receiver filters are not required (unlike conventional FDM).
- Facilitates single frequency networks (SFNs); i.e., transmitter macrodiversity.
Summary of disadvantages
- Sensitive to Doppler shift.
- Sensitive to frequency synchronization problems.
- High peak-to-average-power ratio (PAPR), requiring linear transmitter circuitry, which suffers from poor power efficiency.
- Loss of efficiency caused by cyclic prefix/guard interval.