The mathematical modeling of most of the physical processes in fields like diffusion, chemical kinetics, fluid mechanics, wave mechanics, and general transport problems is governed by such nonlinear PDEs whose analytic solutions are hard to find. Therefore, the approach of investigating nonlinear PDEs via reduction to ODEs becomes important and has been quite fruitful in analysis of many physical problems. The reader is referred to [1] for an introduction to different types of such reduction approaches and to have an idea about the advances made in the fields of nonlinear diffusion, fluid mechanics, and wave propagation from the utilization of reduction-to-ODE approach.