5 OBJECTIONS TO THE AXIOMATIC APPROACH. OTHER PROPOSALSWhat are the ch การแปล - 5 OBJECTIONS TO THE AXIOMATIC APPROACH. OTHER PROPOSALSWhat are the ch ไทย วิธีการพูด

5 OBJECTIONS TO THE AXIOMATIC APPRO

5 OBJECTIONS TO THE AXIOMATIC APPROACH. OTHER PROPOSALS
What are the chief goals of axiomatic set theory, and to what extent have these goals been successfully
attained? In order to answer that question we must remember the circumstances which led
mathematicians, in the early years of the twentieth century, to search for an axiomatic basis to set
theory. The ideas of Cantor had already thoroughly permeated the fabric of modern mathematics, and
had become indispensable tools of the working mathematician. Algebra and analysis were formulated
within a framework of set theory, and some of the most elegant, powerful new results in these fields
were established by using the methods introduced by Cantor and his followers. Thus, when the
paradoxes were discovered and there arose doubts as to the basic validity of Cantor’s system, most
mathematicians were understandably reluctant to give it up; they trusted that some way would be
found to circumvent the contradictions and preserve, if not all, at least most of Cantor’s results.
Hilbert once wrote in this connection: “We will not be expelled from the paradise into which Cantor
has led us.”
With the discovery of newer paradoxes, and the failure of all the initial attempts to avoid them, it
became increasingly clear that it would not be possible to preserve intuitive set theory in its entirety.
Something—possibly quite a lot—would have to be relinquished. The best that one could hope for
was to retain as much of intuitive set theory as was needed to save the new results of modern
mathematics and provide an adequate framework for classical mathematics.
Briefly, then, axiomatic set theory was created to achieve a limited aim: it had to provide a firm
foundation for a system of set theory which—while it did not need to be as comprehensive as intuitive
set theory—must include all of Cantor’s basic results as well as the constructions (such as the number
systems, functions, and relations) needed for classical mathematics.
The systems of both Zermelo and von Neumann were successful in achieving this limited aim. But
the amount of intuitive set theory which they had to sacrifice was considerable. For example, in
Zermelo’s system, as we have already seen, the intuitive way of making sets—by naming a property
of objects and forming the set of all objects which have that property—does not take place at all. It is
replaced by the axiom of selection, in which properties are allowed only to determine subsets of
given sets. Furthermore, the only admissible “properties” are those which can be expressed entirely
in terms of the seven symbols ∈, ∨, ∧, ¬, ⇒, ∀, ∃ and variables x, y, z, … As a result, many of
the things that we normally think of as sets—for example, the “set of all apples,” the “set of all atoms
in the universe”—are not admissible as “sets” in axiomatic set theory. In fact, the only “sets” which
the axioms provide for are, first, the empty set Ø, and then constructions such as {Ø}, {Ø, {Ø}}, etc.,
which can be built up from the empty set. It is remarkable fact that all of mathematics can be based
upon such a meager concept of set.
While the various axiomatic systems of set theory saved mathematics from its immediate peril, they
failed to satisfy a great many people. In particular, many who were sensitive to the elegance and
universality of mathematics were quick to point out that the creations of Zermelo and von Neumann
must be regarded as provisional solutions—as expedients to solve a temporary problem; they will
have to be replaced, sooner or later, by a mathematical theory of broader scope, which treats the
concept of “set” in its full, intuitive generality.
This argument against axiomatic set theory—that it deals with an amputated version of our intuitive
conception of a set—has important philosophical ramifications; it is part of a far wider debate, on the
nature of mathematical “truth.” The debate centers around the following question: Are mathematical
concepts creations (that is, inventions) of the human mind, or do they exist independently of us in a
“platonic” realm of concepts, merely to be discovered by the mathematician? The latter opinion is
often referred to as “platonic realism” and is the dominant viewpoint of classical mathematics. We
illustrate these two opposing points of view by showing how they apply to a particular concept—the
notion of natural numbers. From the viewpoint of platonic realism, the concepts “one,” “two,”
“three,” and so on, exist in nature and existed before the first man began to count. If intelligent beings
exist elsewhere in the universe, then, no matter how different they are from us, they have no doubt
discovered the natural numbers and found them to have the same properties they have for us. On the
other hand, according to the opposing point of view, while three cows, three stones, or three trees
exist in nature, the natural number three is a creation of our minds; we have invented a procedure for
constructing the natural numbers (by starting from zero and adding 1 each time, thus producing
successively 1, 2, 3, etc.) and have in this manner fashioned a conceptual instrument of our own
making.
How does platonic realism affect the status of axiomatic set theory? From the point of view of
platonic realism, mathematical objects are given to us ready-made, with all their features and all their
properties. It follows that to say a mathematical theorem is true means it expresses a correct
statement about the relevant mathematical objects. (For example, the proposition 2 + 2 = 4 is not
merely a formal statement provable in arithmetic; it states an actual fact about numbers.) Now—if
we admit that mathematical objects are given to us with all their properties, it follows, in particular,
that the notion of set is a fixed, well-defined concept which we are not free to alter for our own
convenience. Thus the “sets” created by Zermelo and von Neumann do not exist, and theorems which
purport to describe these nonexistent objects are false! In conclusion, if we were to accept a strict
interpretation of platonic realism, we would be forced to reject the systems of Zermelo and von
Neumann as mathematically invalid.
Fortunately, the trend, for some time now, has been away from platonism and toward a more
flexible, more “agnostic” attitude toward mathematical “truth.” For one thing, developments in
mathematics have been conforming less and less to the pattern dictated by platonic philosophy. For
another, the cardinal requirement of platonism—that every mathematical object correspond to a
definite, distinct object of our intuition (just as “point” and “line” refer to well-defined objects of our
spatial intuition)—came to be an almost unbearable burden on the work of creative mathematicians
by the nineteenth century. They were dealing with a host of new concepts (such as complex numbers,
abstract laws of composition, and the general notion of function) which did not lend themselves to a
simple interpretation in concrete terms. The case of the complex numbers is a good illustration of
what was happening. Classical mathematics never felt at ease with the complex numbers, for it lacked
a suitable “interpretation” of them, and as a result there were nagging doubts as to whether such things
really “existed.” Real numbers may be interpreted as lengths or quantities, but the square root of a
negative real number—this did not seem to correspond to anything in the real world or in our intuition
of number. Yet the system of the complex numbers arises in a most natural way—as the smallest
number system which contains the real numbers and includes the roots of every algebraic equation
with real coefficients; whether or not the complex numbers have a physical or psychological
counterpart seems irrelevant.
The case of the complex numbers strikes a parallel with the problem of axiomatic set theory. For
the “sets” created by Zermelo and von Neumann arise quite naturally in a mathematical context. They
give us the simplest notion of set which is adequate for mathematics and yields a consistent axiomatic
theory. Whether or not we can interpret them intuitively may be relatively unimportant.
Be that as it may, many mathematicians in the early 1900’s were reluctant to make so sharp a break
with tradition as axiomatic set theory seemed to demand. Furthermore, they felt, on esthetic grounds,
that a mathematical theory of sets should describe all the things—and only those things—which our
intuition recognizes to be sets. Among them was Bertrand Russell; in his efforts to reinstate intuitive
set theory, Russell was led to the idea that we may consider sets to be ordered in a hierarchy of
“levels,” where, if A and are sets and A is an element of , then is “one level higher” than A.
For example, in plane geometry, a circle (regarded as a set of points) is one level below a family of
circles, which, in turn, is one level below a set of families of circles. This basic idea was built by
Russell into a theory called the theory of types, which can be described, in essence, as follows.
Every set has a natural number assigned to it, called its level. The simplest sets, those of level 0,
are called individuals—they do not have elements. A collection of individuals is a set of level 1; a
collection of sets of level 1 is a set of level 2; and so on. In the theory of types the expression a ∈ B
is only meaningful if, for some number n, a is a set of level n and B is a set of level n + 1. It follows
that the statement x ∈ x has no meaning in the theory of types, and as a result, Russell’s paradox
vanishes for the simple reason that it cannot even be formulated.
Russell’s theory of types is built upon a beautifully simple idea. Unfortunately, in order to make it
“work,” Russell was forced to add a host of new assumptions, until finally the resulting theory
became too cumbersome to work with and too complica
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
5 OBJECTIONS TO THE AXIOMATIC APPROACH. OTHER PROPOSALSWhat are the chief goals of axiomatic set theory, and to what extent have these goals been successfullyattained? In order to answer that question we must remember the circumstances which ledmathematicians, in the early years of the twentieth century, to search for an axiomatic basis to settheory. The ideas of Cantor had already thoroughly permeated the fabric of modern mathematics, andhad become indispensable tools of the working mathematician. Algebra and analysis were formulatedwithin a framework of set theory, and some of the most elegant, powerful new results in these fieldswere established by using the methods introduced by Cantor and his followers. Thus, when theparadoxes were discovered and there arose doubts as to the basic validity of Cantor’s system, mostmathematicians were understandably reluctant to give it up; they trusted that some way would befound to circumvent the contradictions and preserve, if not all, at least most of Cantor’s results.Hilbert once wrote in this connection: “We will not be expelled from the paradise into which Cantorhas led us.”With the discovery of newer paradoxes, and the failure of all the initial attempts to avoid them, itbecame increasingly clear that it would not be possible to preserve intuitive set theory in its entirety.Something—possibly quite a lot—would have to be relinquished. The best that one could hope forwas to retain as much of intuitive set theory as was needed to save the new results of modernmathematics and provide an adequate framework for classical mathematics.Briefly, then, axiomatic set theory was created to achieve a limited aim: it had to provide a firmfoundation for a system of set theory which—while it did not need to be as comprehensive as intuitiveset theory—must include all of Cantor’s basic results as well as the constructions (such as the numbersystems, functions, and relations) needed for classical mathematics.The systems of both Zermelo and von Neumann were successful in achieving this limited aim. Butthe amount of intuitive set theory which they had to sacrifice was considerable. For example, inZermelo’s system, as we have already seen, the intuitive way of making sets—by naming a propertyof objects and forming the set of all objects which have that property—does not take place at all. It isreplaced by the axiom of selection, in which properties are allowed only to determine subsets ofgiven sets. Furthermore, the only admissible “properties” are those which can be expressed entirelyin terms of the seven symbols ∈, ∨, ∧, ¬, ⇒, ∀, ∃ and variables x, y, z, … As a result, many ofthe things that we normally think of as sets—for example, the “set of all apples,” the “set of all atomsin the universe”—are not admissible as “sets” in axiomatic set theory. In fact, the only “sets” whichthe axioms provide for are, first, the empty set Ø, and then constructions such as {Ø}, {Ø, {Ø}}, etc.,which can be built up from the empty set. It is remarkable fact that all of mathematics can be basedupon such a meager concept of set.While the various axiomatic systems of set theory saved mathematics from its immediate peril, theyfailed to satisfy a great many people. In particular, many who were sensitive to the elegance anduniversality of mathematics were quick to point out that the creations of Zermelo and von Neumannmust be regarded as provisional solutions—as expedients to solve a temporary problem; they willhave to be replaced, sooner or later, by a mathematical theory of broader scope, which treats theconcept of “set” in its full, intuitive generality.This argument against axiomatic set theory—that it deals with an amputated version of our intuitiveconception of a set—has important philosophical ramifications; it is part of a far wider debate, on thenature of mathematical “truth.” The debate centers around the following question: Are mathematicalconcepts creations (that is, inventions) of the human mind, or do they exist independently of us in a“platonic” realm of concepts, merely to be discovered by the mathematician? The latter opinion isoften referred to as “platonic realism” and is the dominant viewpoint of classical mathematics. Weillustrate these two opposing points of view by showing how they apply to a particular concept—thenotion of natural numbers. From the viewpoint of platonic realism, the concepts “one,” “two,”
“three,” and so on, exist in nature and existed before the first man began to count. If intelligent beings
exist elsewhere in the universe, then, no matter how different they are from us, they have no doubt
discovered the natural numbers and found them to have the same properties they have for us. On the
other hand, according to the opposing point of view, while three cows, three stones, or three trees
exist in nature, the natural number three is a creation of our minds; we have invented a procedure for
constructing the natural numbers (by starting from zero and adding 1 each time, thus producing
successively 1, 2, 3, etc.) and have in this manner fashioned a conceptual instrument of our own
making.
How does platonic realism affect the status of axiomatic set theory? From the point of view of
platonic realism, mathematical objects are given to us ready-made, with all their features and all their
properties. It follows that to say a mathematical theorem is true means it expresses a correct
statement about the relevant mathematical objects. (For example, the proposition 2 + 2 = 4 is not
merely a formal statement provable in arithmetic; it states an actual fact about numbers.) Now—if
we admit that mathematical objects are given to us with all their properties, it follows, in particular,
that the notion of set is a fixed, well-defined concept which we are not free to alter for our own
convenience. Thus the “sets” created by Zermelo and von Neumann do not exist, and theorems which
purport to describe these nonexistent objects are false! In conclusion, if we were to accept a strict
interpretation of platonic realism, we would be forced to reject the systems of Zermelo and von
Neumann as mathematically invalid.
Fortunately, the trend, for some time now, has been away from platonism and toward a more
flexible, more “agnostic” attitude toward mathematical “truth.” For one thing, developments in
mathematics have been conforming less and less to the pattern dictated by platonic philosophy. For
another, the cardinal requirement of platonism—that every mathematical object correspond to a
definite, distinct object of our intuition (just as “point” and “line” refer to well-defined objects of our
spatial intuition)—came to be an almost unbearable burden on the work of creative mathematicians
by the nineteenth century. They were dealing with a host of new concepts (such as complex numbers,
abstract laws of composition, and the general notion of function) which did not lend themselves to a
simple interpretation in concrete terms. The case of the complex numbers is a good illustration of
what was happening. Classical mathematics never felt at ease with the complex numbers, for it lacked
a suitable “interpretation” of them, and as a result there were nagging doubts as to whether such things
really “existed.” Real numbers may be interpreted as lengths or quantities, but the square root of a
negative real number—this did not seem to correspond to anything in the real world or in our intuition
of number. Yet the system of the complex numbers arises in a most natural way—as the smallest
number system which contains the real numbers and includes the roots of every algebraic equation
with real coefficients; whether or not the complex numbers have a physical or psychological
counterpart seems irrelevant.
The case of the complex numbers strikes a parallel with the problem of axiomatic set theory. For
the “sets” created by Zermelo and von Neumann arise quite naturally in a mathematical context. They
give us the simplest notion of set which is adequate for mathematics and yields a consistent axiomatic
theory. Whether or not we can interpret them intuitively may be relatively unimportant.
Be that as it may, many mathematicians in the early 1900’s were reluctant to make so sharp a break
with tradition as axiomatic set theory seemed to demand. Furthermore, they felt, on esthetic grounds,
that a mathematical theory of sets should describe all the things—and only those things—which our
intuition recognizes to be sets. Among them was Bertrand Russell; in his efforts to reinstate intuitive
set theory, Russell was led to the idea that we may consider sets to be ordered in a hierarchy of
“levels,” where, if A and are sets and A is an element of , then is “one level higher” than A.
For example, in plane geometry, a circle (regarded as a set of points) is one level below a family of
circles, which, in turn, is one level below a set of families of circles. This basic idea was built by
Russell into a theory called the theory of types, which can be described, in essence, as follows.
Every set has a natural number assigned to it, called its level. The simplest sets, those of level 0,
are called individuals—they do not have elements. A collection of individuals is a set of level 1; a
collection of sets of level 1 is a set of level 2; and so on. In the theory of types the expression a ∈ B
is only meaningful if, for some number n, a is a set of level n and B is a set of level n + 1. It follows
that the statement x ∈ x has no meaning in the theory of types, and as a result, Russell’s paradox
vanishes for the simple reason that it cannot even be formulated.
Russell’s theory of types is built upon a beautifully simple idea. Unfortunately, in order to make it
“work,” Russell was forced to add a host of new assumptions, until finally the resulting theory
became too cumbersome to work with and too complica
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
5 คัดค้านแนวทางซึ่งเป็นจริง ข้อเสนออื่น ๆ
สิ่งที่เป็นเป้าหมายหัวหน้าของจริงทฤษฎีเซตและสิ่งที่ขอบเขตเป้าหมายเหล่านี้ได้รับการประสบความสำเร็จ
บรรลุ? เพื่อที่จะตอบคำถามที่เราต้องจำไว้สถานการณ์ที่นำ
นักคณิตศาสตร์ในปีแรกของศตวรรษที่ยี่สิบเพื่อค้นหาพื้นฐานซึ่งเป็นจริงในการตั้ง
ทฤษฎี ความคิดของแคนเทอร์อยู่แล้วได้อย่างทั่วถึงเต็มผ้าของคณิตศาสตร์ที่ทันสมัยและ
ได้กลายเป็นเครื่องมือที่ขาดไม่ได้ของนักคณิตศาสตร์ที่ทำงาน พีชคณิตและการวิเคราะห์สูตร
ภายในกรอบของทฤษฎีเซตและบางส่วนของที่หรูหราที่สุดผลการใหม่ที่มีประสิทธิภาพในสาขาเหล่านี้
ถูกจัดตั้งขึ้นโดยใช้วิธีการแนะนำให้รู้จักกับแคนเทอร์และลูกน้องของเขา ดังนั้นเมื่อ
ความขัดแย้งที่ถูกค้นพบและมีข้อสงสัยที่เกิดขึ้นเป็นไปได้ความถูกต้องพื้นฐานของระบบต้นเสียงส่วนใหญ่
เป็นนักคณิตศาสตร์ที่เข้าใจไม่เต็มใจที่จะให้มันขึ้น; พวกเขาเชื่อถือได้ว่าทางใดทางหนึ่งจะได้รับการ
ค้นพบที่จะหลีกเลี่ยงความขัดแย้งและรักษาหากไม่ได้ทั้งหมดอย่างน้อยที่สุดของผลต้นเสียง.
Hilbert เคยเขียนในการเชื่อมต่อนี้: "เราจะไม่ถูกไล่ออกจากสวรรค์ลงไปที่ต้นเสียง
. ได้นำพวกเรา "
กับการค้นพบใหม่ของความขัดแย้งและความล้มเหลวของความพยายามครั้งแรกที่จะหลีกเลี่ยงพวกเขาก็
กลายเป็นที่ชัดเจนมากขึ้นว่ามันจะเป็นไปไม่ได้ที่จะรักษาตั้งทฤษฎีที่ใช้งานง่ายในสิ่งทั้งปวง.
บางสิ่งบางอย่างอาจจะเป็นค่อนข้างมาก-จะต้องถูกทิ้งร้าง . ที่ดีที่สุดที่หนึ่งจะหวัง
คือการรักษาเท่าของการตั้งทฤษฎีที่ใช้งานง่ายเป็นเป็นสิ่งที่จำเป็นที่จะบันทึกผลการใหม่ที่ทันสมัย
​​คณิตศาสตร์และให้กรอบการทำงานที่เพียงพอสำหรับคณิตศาสตร์คลาสสิก.
สั้น ๆ แล้วจริงทฤษฎีเซตที่ถูกสร้างขึ้นเพื่อให้บรรลุจุดมุ่งหมายที่ จำกัด มันมีที่จะให้ บริษัท
รากฐานสำหรับระบบการทำงานของทฤษฎีเซตซึ่งในขณะที่มันไม่จำเป็นต้องเป็นที่ครอบคลุมเป็นที่ใช้งานง่าย
ทฤษฎีต้องชุดรวมทั้งหมดของผลการขั้นพื้นฐานของคันทอร์เช่นเดียวกับการก่อสร้าง (เช่นจำนวน
ระบบฟังก์ชั่น และความสัมพันธ์) ที่จำเป็นสำหรับคณิตศาสตร์คลาสสิก.
ระบบของทั้งสอง Zermelo von Neumann และประสบความสำเร็จในการบรรลุเป้าหมายนี้มีจุดมุ่งหมายที่ จำกัด แต่
ปริมาณของการตั้งทฤษฎีที่ใช้งานง่ายที่พวกเขาจะต้องเสียสละเป็นอย่างมาก ยกตัวอย่างเช่นใน
ระบบของ Zermelo ที่เราได้เห็นแล้ววิธีที่ง่ายในการทำตั้งชื่อชุดโดยโรงแรม
ของวัตถุและการสร้างชุดของวัตถุทั้งหมดที่มีที่สถานที่ให้บริการไม่ได้เกิดขึ้นในทุก มันถูก
แทนที่ด้วยความจริงของการเลือกในการที่จะได้รับอนุญาตคุณสมบัติเฉพาะเพื่อตรวจสอบส่วนย่อยของ
ชุดที่กำหนด นอกจากนี้เท่านั้นที่ยอมรับ "คุณสมบัติ" เป็นผู้ที่สามารถแสดงทั้ง
ในแง่ของเจ็ดสัญลักษณ์∈, ∨, ∧, ¬, ⇒, ∀, ∃และตัวแปร x, y, z ... เป็นผลให้หลายคน
สิ่งที่เรามักคิดว่าเป็นชุดเช่น "ตั้งแอปเปิ้ลทุกคน" "ตั้งของอะตอมทั้งหมด
ในจักรวาล "สรรพไม่ยอมรับว่าเป็น" ชุด "ในทฤษฎีตั้งซึ่งเป็นจริง ในความเป็นจริงเท่านั้น "ชุด" ซึ่ง
หลักการให้เป็นครั้งแรกเซตว่างØแล้วการก่อสร้างเช่น {Ø}, {Ø {Ø}} ฯลฯ
ซึ่งสามารถสร้างขึ้นมาจากความว่างเปล่า ชุด มันเป็นความจริงที่น่าทึ่งว่าทั้งหมดของคณิตศาสตร์จะขึ้น
อยู่กับแนวคิดดังกล่าวน้อยชุด.
ในขณะที่ระบบซึ่งเป็นจริงต่างๆของทฤษฎีเซตบันทึกคณิตศาสตร์จากอันตรายของมันทันทีที่พวกเขา
ล้มเหลวในการตอบสนองที่ดีหลาย ๆ คน โดยเฉพาะอย่างยิ่งหลายคนที่มีความไวต่อความสง่างามและ
ความเป็นสากลของคณิตศาสตร์ได้อย่างรวดเร็วเพื่อชี้ให้เห็นว่าการสร้างสรรค์ของ Zermelo von Neumann และ
จะต้องได้รับการยกย่องให้เป็นโซลูชั่นที่เป็นชั่วคราว expedients ในการแก้ปัญหาชั่วคราว พวกเขาจะ
ต้องถูกแทนที่ไม่ช้าก็เร็วโดยทฤษฎีทางคณิตศาสตร์ของขอบเขตที่กว้างซึ่งถือว่า
แนวคิดของการ "ตั้ง" เต็มของทั่วไปที่ใช้งานง่าย.
เรื่องนี้กับชุดว่าทฤษฎีซึ่งเป็นจริงมันเกี่ยวข้องกับรุ่นด้วนของเรา ที่ใช้งานง่าย
ความคิดของการตั้งเครือข่ายมีปรัชญาที่สำคัญ มันเป็นส่วนหนึ่งของการอภิปรายที่กว้างไกลใน
ลักษณะของคณิตศาสตร์ศูนย์การอภิปรายรอบคำถามต่อไปนี้ "ความจริง." มีทางคณิตศาสตร์
สร้างสรรค์แนวความคิด (นั่นคือสิ่งประดิษฐ์) ของจิตใจมนุษย์หรือพวกเขามีอยู่เป็นอิสระของเราใน
"สงบ" ขอบเขตของแนวความคิดเพียงจะได้รับการค้นพบโดยนักคณิตศาสตร์? ความเห็นหลัง
มักจะเรียกว่า "ความสมจริงอย่างสงบ" และมีมุมมองที่โดดเด่นของคณิตศาสตร์คลาสสิก เรา
แสดงให้เห็นถึงทั้งสองจุดในมุมมองของฝ่ายตรงข้ามโดยการแสดงวิธีที่พวกเขานำไปใช้กับแนวคิดโดยเฉพาะอย่างยิ่ง
ความคิดของจำนวนธรรมชาติ จากมุมมองของความสมจริงสงบแนวคิด "หนึ่ง", "สอง"
"สาม" และอื่น ๆ ที่มีอยู่ในธรรมชาติและมีอยู่ก่อนคนแรกเริ่มที่จะนับ ถ้าสิ่งมีชีวิตที่มีความคิดสร้างสรรค์
ที่มีอยู่ในจักรวาลอื่น ๆ แล้วไม่ว่าวิธีการที่แตกต่างกันพวกเขาจะจากเราพวกเขามีข้อสงสัยใด
ค้นพบจำนวนธรรมชาติและพบว่าพวกเขามีคุณสมบัติเหมือนกันที่พวกเขามีให้เรา บน
มืออื่น ๆ ตามที่ฝ่ายตรงข้ามจุดของมุมมองในขณะที่สามวัวสามก้อนหินหรือสามต้นไม้
ที่มีอยู่ในธรรมชาติจำนวนธรรมชาติสามคือการสร้างจิตใจของเรา; เราได้คิดค้นขั้นตอนสำหรับการ
สร้างจำนวนธรรมชาติ (โดยเริ่มต้นจากศูนย์และการเพิ่ม 1 ในแต่ละครั้งจึงผลิต
อย่างต่อเนื่อง 1, 2, 3, ฯลฯ ) และมีในลักษณะนี้ fashioned เครื่องดนตรีแนวความคิดของเราเอง
ทำ.
อย่างไรสงบ ส่งผลกระทบต่อความสมจริงสถานะของจริงทฤษฎีเซต? จากมุมมองของ
ความเป็นธรรมชาติสงบวัตถุทางคณิตศาสตร์ที่มีให้กับเราพร้อมทำที่มีคุณสมบัติทั้งหมดของพวกเขาและพวกเขาทั้งหมด
คุณสมบัติ มันตามที่จะบอกว่าทฤษฎีบทคณิตศาสตร์เป็นความจริงหมายความว่ามันเป็นการแสดงออกถึงความถูกต้อง
คำสั่งเกี่ยวกับวัตถุทางคณิตศาสตร์ที่เกี่ยวข้อง (ยกตัวอย่างเช่นเรื่องที่ 2 + 2 = 4 ไม่ได้เป็น
เพียงคำสั่งอย่างเป็นทางการสามารถพิสูจน์ได้ในการคำนวณ. ระบุความเป็นจริงเกี่ยวกับตัวเลข) ตอนนี้ถ้า
เรายอมรับว่าวัตถุทางคณิตศาสตร์ที่มีให้กับเราด้วยคุณสมบัติทั้งหมดของพวกเขาก็ดังต่อไปนี้ โดยเฉพาะอย่างยิ่ง
ที่ความคิดของชุดจะได้รับการแก้ไขที่ดีที่กำหนดแนวความคิดที่เราไม่ได้ฟรีที่จะปรับเปลี่ยนของเราเองสำหรับ
ความสะดวกสบาย ดังนั้น "ชุด" สร้างขึ้นโดย Zermelo และ von Neumann ไม่อยู่และทฤษฎีบทซึ่ง
ตั้งใจที่จะอธิบายไม่มีวัตถุเหล่านี้เป็นเท็จ! สรุปได้ว่าถ้าเราจะยอมรับการเข้มงวด
การตีความของความสมจริงสงบเราจะถูกบังคับให้ปฏิเสธระบบ Zermelo และฟอน
นอยมันน์เป็นไม่ถูกต้องทางคณิตศาสตร์.
โชคดี, แนวโน้มสำหรับเวลาในขณะนี้บางส่วนได้รับออกไปจาก platonism และต่อ อื่น ๆ อีกมากมาย
ที่มีความยืดหยุ่นมากขึ้นทัศนคติ "ไม่เชื่อเรื่องพระเจ้า" ไปทางคณิตศาสตร์ "ความจริง". สำหรับสิ่งหนึ่งที่การพัฒนาใน
วิชาคณิตศาสตร์ได้รับสอดคล้องน้อยลงและน้อยกับรูปแบบการกำหนดโดยปรัชญาสงบ สำหรับ
อีกหนึ่งความต้องการสำคัญของ platonism ที่ทุกวัตถุทางคณิตศาสตร์ที่สอดคล้องกับ
ที่แน่นอนของวัตถุที่แตกต่างของสัญชาตญาณของเรา (เช่นเดียวกับ "จุด" และ "สาย" หมายถึงวัตถุที่ดีที่กำหนดของเรา
ปรีชาเชิงพื้นที่) -came จะเป็นเกือบ ภาระเหลือทนในการทำงานของนักคณิตศาสตร์สร้างสรรค์
โดยศตวรรษที่สิบเก้า พวกเขาได้รับการติดต่อกับโฮสต์ของแนวคิดใหม่ (เช่นตัวเลขที่ซับซ้อน
กฎหมายนามธรรมขององค์ประกอบและความคิดทั่วไปของฟังก์ชั่น) ซึ่งไม่ได้ยืมตัวให้
ตีความง่ายในแง่ที่เป็นรูปธรรม กรณีของตัวเลขที่ซับซ้อนเป็นภาพที่ดีของ
สิ่งที่เกิดขึ้น คณิตศาสตร์คลาสสิกไม่เคยรู้สึกสบายใจกับตัวเลขที่ซับซ้อนสำหรับมันขาด
ความเหมาะสม "ตีความ" ของพวกเขาและเป็นผลให้มีข้อสงสัยจู้จี้เป็นไปได้ว่าสิ่งนั้น
จริงๆ "อยู่." ตัวเลขจริงอาจตีความได้ว่ายาวหรือปริมาณ แต่รากที่สองของ
จำนวนนี้จริงเชิงลบไม่ได้ดูเหมือนจะสอดคล้องกับสิ่งที่อยู่ในโลกแห่งความจริงหรือในสัญชาตญาณของเรา
จำนวน แต่ระบบการทำงานของตัวเลขที่ซับซ้อนที่เกิดขึ้นในทางที่เป็นธรรมชาติมากที่สุดเล็กที่สุด
ระบบตัวเลขที่มีตัวเลขจริงและรวมถึงรากของทุกสมการพีชคณิต
ที่มีสัมประสิทธิ์จริง หรือไม่ว่าจะมีตัวเลขที่ซับซ้อนทางร่างกายหรือจิตใจ
คู่ดูเหมือนไม่เกี่ยวข้อง.
กรณีของตัวเลขที่ซับซ้อนนัดขนานกับปัญหาของจริงทฤษฎีเซต สำหรับ
"ชุด" สร้างขึ้นโดย Zermelo และ von Neumann เกิดขึ้นค่อนข้างเป็นธรรมชาติในบริบททางคณิตศาสตร์ พวกเขา
ทำให้เรามีความคิดที่ง่ายที่สุดของชุดซึ่งเป็นที่เพียงพอสำหรับการคณิตศาสตร์และอัตราผลตอบแทนจริงที่สอดคล้อง
ทฤษฎี หรือไม่เราสามารถแปลความหมายได้อย่างสังหรณ์ใจอาจจะไม่สำคัญค่อนข้าง.
เป็นไปได้ว่ามันอาจคณิตศาสตร์จำนวนมากในช่วงต้นปี 1900 ไม่เต็มใจที่จะให้ความคมชัดเพื่อแบ่ง
กับประเพณีเป็นจริงทฤษฎีเซตดูเหมือนจะเรียกร้อง นอกจากนี้พวกเขารู้สึกว่าในบริเวณงาม
ที่ทฤษฎีทางคณิตศาสตร์ของชุดควรจะอธิบายสิ่งและทุกสิ่งเท่านั้นซึ่งผู้ที่เรา
ตระหนักถึงสัญชาตญาณที่จะเป็นชุด ในหมู่พวกเขาเป็นเบอร์ทรานด์รัสเซล; ในความพยายามของเขาที่จะกลับไปใช้งานง่าย
ตั้งทฤษฎี, รัสเซลนำไปสู่ความคิดที่ว่าเราอาจจะพิจารณาชุดที่จะสั่งซื้อในลำดับชั้นของ
"ระดับ" ที่ถ้าและเป็นชุดและเป็นองค์ประกอบของแล้วคือ "หนึ่งระดับ ที่สูงขึ้น "กว่า A.
ตัวอย่างเช่นในรูปทรงเรขาคณิตเครื่องบินวงกลม (ถือได้ว่าเป็นชุดของจุด) เป็นระดับที่ต่ำกว่าครอบครัวของ
วงการซึ่งในที่สุดก็เป็นระดับที่ต่ำกว่าชุดของครอบครัวของวงการ ความคิดพื้นฐานนี้ถูกสร้างขึ้นโดย
รัสเซลเข้าไปในทฤษฎีที่เรียกว่าทฤษฎีของชนิดซึ่งสามารถอธิบายได้ในสาระสำคัญดังต่อไปนี้.
ชุดทุกคนมีจำนวนธรรมชาติกำหนดให้มันเรียกว่าระดับ ชุดง่ายผู้ที่ระดับ 0,
จะเรียกว่าบุคคลที่พวกเขาไม่ได้มีองค์ประกอบ คอลเลกชันของบุคคลที่เป็นชุดของระดับที่ 1;
คอลเลกชันของชุดระดับที่ 1 คือชุดของระดับ 2; เป็นต้น ในทางทฤษฎีประเภทแสดงออก∈ B
เป็นเพียงความหมายถ้าจำนวน n บางคือชุดของระดับ n และ B เป็นชุดของระดับ n + 1 ต่อไป
ว่าคำสั่ง x ∈ x ไม่มีความหมายใน ทฤษฎีของชนิดและเป็นผลให้ความขัดแย้งของรัสเซล
หายไปด้วยเหตุผลง่ายๆว่ามันจะไม่ได้ถูกกำหนด.
ทฤษฎีของรัสเซลประเภทถูกสร้างขึ้นบนความคิดที่เรียบง่ายสวยงาม แต่น่าเสียดายที่ในการที่จะทำให้มันเป็น
"งาน" รัสเซลถูกบังคับให้เพิ่มโฮสต์ของสมมติฐานใหม่จนในที่สุดส่งผลให้ทฤษฎี
กลายเป็นยุ่งยากเกินไปที่จะทำงานด้วยและ complica เกินไป
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
พื้นที่แบบครบวงจรบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิตบิต
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: