indicating that the mean rate for PGA > 0.05 g is equal to 0.075 per year, also very close to the total-probability calculation
(see Fig. 3). More importantly, the statistical test also supports that this larger seismic hazard should follow the Poisson
distribution as the test data shown in Fig. 9.
Fig. 10 shows the probability distribution for an even larger seismic hazard in PGA > 0.1 g. The MCS shows that the hazard
estimate is about 0.016 per year, also very close to 0.017 from the total-probability calculation (see Fig. 3). In addition, as
the comparison and statistical test data shown in Fig. 10, this seismic hazard in PGA > 0.1 g should be following the Poisson
distribution as well, with the support from MCS to statistical analysis.
5. Discussion: earthquake, seismic hazard, and the Poisson distribution
As mentioned previously, earthquake frequency following the Poisson distribution is commonly used in earthquake analyses,
including in this study. Nevertheless, it must be noted that the ‘‘earthquake-and-Poisson’’ relationship was supported
by earthquake observations in California or in Taiwan [21,22], making it more of a fact than an assumption.
By contrast, seismic hazard, which is a function of earthquake magnitude, distance, frequency, and ground motion models,
is a different random variable than earthquake. But without any tangible support in the literature, the ‘‘seismic-hazardand-Poisson’’
assumption has been an engineering judgment at best, until this study offering some evidence for the first
time from the novel application of Monte Carlo Simulation.
6. Summary
Seismic hazard is usually considered a variable following the Poisson distribution in earthquake studies. But without any
support in the literature, the key scope of this study is to evaluate this engineering assumption. The novelty of the study is
to apply Monte Carlo Simulation to solve the probabilistic analysis, instead of using total-probability algorithms currently
employed
ที่ระบุว่าคะแนนหมายถึงพีจีเอ > 0.05 กรัม เท่ากับ 0.075 ต่อปี นอกจากนี้ยังอยู่ใกล้กับผลรวมความน่าจะเป็นการคำนวณ
( ดูรูปที่ 3 ) ที่สำคัญ ทดสอบทางสถิตินอกจากนี้ยังสนับสนุนว่าขนาดใหญ่แผ่นดินไหวอันตรายควรปฏิบัติตามปัวซอ
แจกเป็นการทดสอบข้อมูลที่แสดงในรูปที่ 9 .
รูปที่ 10 แสดงการกระจายความน่าจะเป็นที่ใหญ่กว่าแผ่นดินไหวภัยใน PGA > 0.1 กรัมพิธีกรขึ้นแสดงให้เห็นว่าอันตราย
ประมาณ 0.016 ต่อปี นอกจากนี้ยังอยู่ใกล้กับ 0.017 จากการคำนวณความน่าจะเป็นรวม ( ดูรูปที่ 3 ) นอกจากนี้ ตามที่
เปรียบเทียบและทดสอบข้อมูลทางสถิติที่แสดงในรูปที่ 10 นี้ แผ่นดินไหว ภัยใน PGA > 0.1 กรัม ควรปฏิบัติตามปัวซอ
กระจายเช่นกัน ด้วยการสนับสนุนจากพิธีกรเพื่อการวิเคราะห์ทางสถิติ .
5 การอภิปราย : แผ่นดินไหวแผ่นดินไหวภัย , และการแจกแจงปัวซง
ตามที่กล่าวถึงก่อนหน้านี้ เกิดแผ่นดินไหวถี่ตามการแจกแจงปัวซงเป็นที่นิยมใช้ในการวิเคราะห์แผ่นดินไหว
รวมทั้งในการศึกษานี้ อย่างไรก็ตาม จะต้องมีการตั้งข้อสังเกตว่า ' 'earthquake-and-poisson ' ' ความสัมพันธ์ได้รับการสังเกตในแคลิฟอร์เนียหรือ
จากแผ่นดินไหวในไต้หวัน [ 21,22 ] ทำให้มันมากขึ้นของความเป็นจริงมากกว่า
การสันนิษฐานโดยคมชัด , ความอันตราย , ซึ่งเป็นฟังก์ชันของแผ่นดินไหวขนาด , ระยะทาง , ความถี่ , และรูปแบบการเคลื่อนไหวพื้น
เป็นตัวแปรสุ่มที่แตกต่างกันกว่าแผ่นดินไหว แต่ไม่มีการสนับสนุนที่มีตัวตนในวรรณคดี , ' ' ' 'seismic-hazardand-poisson
สมมติฐานได้รับการวิศวกรรมการตัดสินใจที่ดีที่สุด จนกว่า การศึกษานี้เสนอหลักฐานครั้งแรก
เวลาจากโปรแกรมใหม่ของมอนติ คาร์โล
6 แผ่นดินไหว ภัยคือการพิจารณามักจะสรุป
ตัวแปรตามการแจกแจงปัวซงในการศึกษาแผ่นดินไหว แต่ไม่มี
สนับสนุนในวรรณคดี , ขอบเขตที่สำคัญของการศึกษานี้ เพื่อศึกษาวิศวกรรมนี้สมมุติ นวัตกรรมการศึกษา
ใช้เทคนิคมอนติคาร์โล แก้ปัญหาการวิเคราะห์ probabilistic ,แทนการใช้ขั้นตอนวิธีความน่าจะเป็นทั้งหมดในปัจจุบัน
ว่าจ้าง
การแปล กรุณารอสักครู่..
