Underpinning science education reform movements in thelast 20 years—at การแปล - Underpinning science education reform movements in thelast 20 years—at ไทย วิธีการพูด

Underpinning science education refo

Underpinning science education reform movements in the
last 20 years—at all levels and within all disciplines—is an
explicit shift in the goals of science teaching from students
simply creating a knowledge base of scientific facts to
students developing deeper understandings of major concepts
within a scientific discipline. For example, what use is a
detailed working knowledge of the chemical reactions of the
Krebs cycle without a deeper understanding of the relationship
between these chemical reactions of cellular respiration
and an organism’s need to harvest energy from food? This
emphasis on conceptual understanding in science education
reform has guided the development of standards and
permeates all major science education reform policy documents
(American Association for the Advancement of
Science, 1989, 1993, 2001; National Research Council, 1996).
However, this transition to teaching toward deep conceptual
understanding often sounds deceptively simple, when in
reality it presents a host of significant challenges both in
theory and in practice. Most importantly, few if any students
come to the subject of biology in college, high school, or even
middle-school classrooms without significant prior knowledge
of the subject. It is no surprise, then, that students can
never be considered blank slates, beginning with zero
knowledge, awaiting the receipt of current scientific understanding.
Yet, there is often little time invested by instructors
in finding out in depth what students already know and,
more specifically, what they do not know, what they are
confused about, and how their preconceptions about the
world do or do not fit with new information they are
attempting to learn. In this feature, we explore key ideas
associated with teaching for understanding, including the
notion of conceptual change, the pivotal role of alternative
conceptions, and practical implications these ideas have for
teachers of science at all levels in designing learning
experiences for students.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
Underpinning science education reform movements in thelast 20 years—at all levels and within all disciplines—is anexplicit shift in the goals of science teaching from studentssimply creating a knowledge base of scientific facts tostudents developing deeper understandings of major conceptswithin a scientific discipline. For example, what use is adetailed working knowledge of the chemical reactions of theKrebs cycle without a deeper understanding of the relationshipbetween these chemical reactions of cellular respirationand an organism's need to harvest energy from food? Thisemphasis on conceptual understanding in science educationreform has guided the development of standards andpermeates all major science education reform policy documents(American Association for the Advancement ofScience, 1989, 1993, 2001; National Research Council, 1996).However, this transition to teaching toward deep conceptualunderstanding often sounds deceptively simple, when inreality it presents a host of significant challenges both intheory and in practice. Most importantly, few if any studentscome to the subject of biology in college, high school, or evenmiddle-school classrooms without significant prior knowledgeof the subject. It is no surprise, then, that students cannever be considered blank slates, beginning with zeroknowledge, awaiting the receipt of current scientific understanding.Yet, there is often little time invested by instructorsin finding out in depth what students already know and,more specifically, what they do not know, what they areconfused about, and how their preconceptions about theworld do or do not fit with new information they areattempting to learn. In this feature, we explore key ideasassociated with teaching for understanding, including thenotion of conceptual change, the pivotal role of alternativeconceptions, and practical implications these ideas have forteachers of science at all levels in designing learningexperiences for students.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
Underpinning Science Education Reform Movements in the
last 20 years-at all levels and Within all disciplines-is an
Explicit Shift in the goals of Science teaching from students
simply creating a Knowledge Base of Scientific Facts to
students developing deeper Understandings of Major Concepts
Within a Scientific. discipline. For example, what use is a
detailed working Knowledge of the Chemical reactions of the
Krebs Cycle Without a deeper understanding of the Relationship
between these Chemical reactions of Cellular respiration
and an organism's Need to Harvest Energy from Food? This
emphasis on conceptual understanding in Science Education
Reform has Guided the Development of Standards and
permeates all Major Science Education Reform Policy documents
(American Association for the Advancement of
Science, one thousand nine hundred eighty-nine, 1,993, 2001; National Research Council, 1996th).
However, this transition. Deep toward teaching to conceptual
understanding often sounds deceptively Simple, when in
Reality it Presents a Host of significant challenges both in
Theory and Practice in. Most importantly, few if any students
Come to the subject of Biology in College, High school, or even
MIDDLE-school Classrooms Without significant prior Knowledge
of the subject. It is no Surprise, then, that students Can
Never be considered blank slates, Beginning with Zero
Knowledge, Awaiting the Receipt of current Scientific understanding.
Yet, there is often Little time invested by Instructors
in Finding out in depth what students already know and,.
more specifically, what they do not know, what they are
confused About, and How their preconceptions About the
World do or do not Fit with New information they are
attempting to Learn. In this Feature, we explore Key ideas
associated with teaching for understanding, including the
notion of conceptual Change, the pivotal role of Alternative
conceptions, and these ideas have practical implications for
teachers at all levels of Science in Designing Learning
experiences for students.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
Underpinning science education reform movements in the.Last 20 years - at all levels and within all disciplines - is an.Explicit shift in the goals of science teaching from students.Simply creating a knowledge base of scientific facts to.Students developing deeper understandings of major concepts.Within a scientific discipline. For example what use, is a.Detailed working knowledge of the chemical reactions of the.Krebs cycle without a deeper understanding of the relationship.Between these chemical reactions of cellular respiration.And an organism 's need to harvest energy from food? This.Emphasis on conceptual understanding in science education.Reform has guided the development of standards and.Permeates all major science education reform policy documents.(American Association for the Advancement of.,,, Science 1989 1993 2001; National, Research Council 1996).However this transition, to teaching toward deep conceptual.Understanding often sounds deceptively simple when in,,Reality it presents a host of significant challenges both in.Theory and in practice. Most importantly few if, any students.Come to the subject of biology in college high school or even,,,Middle-school classrooms without significant prior knowledge.Of the subject. It is no surprise then that students can,,,Never be considered blank slates beginning with, zero.Knowledge awaiting the, receipt of current scientific understanding.Yet there is, often little time invested by instructors.In finding out in depth what students already, know andMore specifically what they, do, not know what they are.Confused about and how, their preconceptions about the.World do or do not fit with new information they are.Attempting to learn. In this feature we explore, key ideas.Associated with teaching for understanding including the,,Notion of conceptual change the pivotal, role of alternative.Conceptions and practical, implications these ideas have for.Teachers of science at all levels in designing learning.Experiences for students.
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: