Whether you like to think of it or not, Maths is a part of every day life and snooker exhibits a lot of mechanical properties that can explain everything about snooker.
You may have never thought exactly why a ball actually stops moving, just that it loses speed and stops. But this means that there is a deceleration (in fact this is incorrect terminology, it is better to say negative acceleration). Newton's laws of motion is where the mechanics begins to come into play, his first law is that a body remains a constant velocity or at rest unless an external force is applied.
As there is a negative acceleration when a snooker ball is hit it means that there must be another external force on the ball besides the force that was applied when it was hit, in fact there are three forces acting upon it. The weight of the ball (note that weight and mass are different!), the reaction force of the object, and the friction between the ball and the cloth. You may be thinking what about when the ball is hit, surely that is a force? And it is! But, that is a non-constant force, it is applied just once and as it is not constant it does not affect the acceleration of the ball.
The dotted lines are lengths and angles that can be worked out, the solid
lines are ones that would have to be measured.
But what does all of this actually mean? The angle θ created by the two balls and the pocket is the angle that has to be adhered to in order for the object ball to be potted. The angle α can be worked out first by working out N using the cosine rule and then using the sine rule with N and θ; ϕ can be worked out using SOHCAHTOA. Then by adding them: α + ϕ is the angle the cue ball has to be played at in order to hit the red ball at the correct angle to direct it towards to pocket. We can work out everything from here now, but first I need to introduce to SUVAT equations.