3. Airline Choices Under Noise Constraints
3.1. The case of a cumulative constraint
Suppose that noise regulation takes the form of a cumulative noise constraint, which imposes
a common limit on the total noise generated by each airline, being written nifi ≤ L,
i = 1, 2. Since this constraint will bind in equilibrium, it can be used to eliminate n1, which
can be written n1 = L/f1. Substituting in (8), the multiplicative p1 − τ − /n1 term becomes
p1 − τ − f1/L. The resulting objective function then depends only on the choice variables p1
and f1.
In modeling airline decisions, an important question concerns the timing of choices. While
both flight frequencies and fares can be adjusted relatively easily, fares appear to be more
flexible than frequencies. As a result, under the most realistic approach, fares would be chosen
conditional on frequencies, which themselves would be set in a first stage, taking the secondstage
impact on fares into account (the outcome is a subgame perfect Nash equilibrium).
The analysis eventually adopts this approach, but it is useful to start by considering the less-
8
realistic case where fares and frequencies are chosen simultaneously in Nash fashion. Under this
approach, airline 1 simultaneously sets the levels of p1 and f1, taking p2 and f2 as parametric.
The first-order conditions for the simultaneous-choice problem are
∂π1
∂p1
= q1 − p1 − τ − f1/L
α
= 0 (9)
∂π1
∂f1
= −
L
1
2
− 1
α
[p1 − p2 + γ/f1 − γ/f2]
+
γ(p1 − τ − f1/L)
αf2
1
− θ = 0. (10)
While the derivatives ∂2π1/∂p21
and ∂2π1/∂f2
1 are easily seen to be negative, the remaining
second-order condition (positivity of the Hessian matrix of π1) is assumed to hold.11
Given the symmetry of the setup, the equilibrium fares and frequencies will be symmetric
across carriers, with the values denoted p and f, and each airline’s traffic will equal 1/2.
Imposing the latter condition in (9) and rearranging, the fare can be written
p = α/2 + τ + f/L. (11)
Thus, the fare equals the full marginal cost of a seat, given by the operating cost τ plus noise
abatement cost per seat (f/L),12 plus a markup that depends on brand loyalty. Note that,
as the extent of brand loyalty rises, leading to a higher α/2, a carrier loses less traffic from
raising its fare, so that p increases.
After substituting (11) into (10) and imposing symmetry, the equation can be solved for
the equilibrium frequency, which equals
f =
γ
2θ + /L
. (12)
This solution shows that frequency is increasing in the disutility of schedule delay (γ) and
decreasing in the fixed cost per flight (θ), both natural conclusions. Since the fare in (11)
increases with frequency, p is then increasing in γ and decreasing in θ. Note that the last
9
conclusion, which says that p is inversely related to the fixed cost per flight, is counterintuitive.
The explanation is that the reduction in service quality caused by the higher θ reduces
willingness to pay for air travel. Observe also that f is independent of the marginal seat cost
(τ ) and the extent of brand loyalty (α).13
The key comparative-static question, however, concerns the effect of the noise limit L on
the airline’s choice variables. When the noise constraint is relaxed by increasing L, (12) shows
that frequency rises, with the denominator expression becoming smaller. This conclusion is
natural since, as L rises, the airline can raise f for a given n without violating the constraint.
With L and appearing in ratio form in (12), the opposite conclusion applies to an increase
in : by raising the cost per flight, a higher noise-abatement cost lowers frequency.
Turning to the impact of L on p, the effect is not immediately apparent given that p has an
direct inverse dependence on L from (11) as well as an indirect dependence via f. However, after
substituting (12) into (11) and rearranging, the last term reduces to
γ2/(2θL2 + L), which
is decreasing in L. Therefore, relaxation of the noise constraint leads to a lower equilibrium
fare, a conclusion that shows how the cost of airline travel is affected along with service quality
(f) by the stringency of noise regulation. Since L and enter asymmetrically in the previous
expression, their impacts are no longer mirror images. But it is easily seen that the expression
is increasing in , so that the fare naturally rises with the cost of abatement.
Aircraft quietness and size, n and s, can be recovered from the f solution, allowing further
comparative-static effects to be derived. Since s = q/f = 1/2f, the parameter impacts on
aircraft size are opposite to those on flight frequency. With n = L/f, substitution of (12)
yields
n =
2θL2 + L
γ
, (13)
so that n is increasing in L and , both natural conclusions. Thus, aircraft quietness falls (n
rises) as the noise constraint is relaxed or the cost of abatement increases. In addition, (13)
shows that a higher fixed cost per flight raises n, while an increase in the delay disutility has
the opposite effect. All of these comparative-static results are summarized in Table 1.
3 . สายการบินทางเลือกภายใต้ข้อจำกัดเสียง
3.1 . กรณีของการสะสม
สมมติว่าระเบียบเสียง ใช้รูปแบบของการรวมเสียง ซึ่งกำหนดวงเงินร่วมกันบน
รวมเสียงที่สร้างขึ้นโดยแต่ละสายการบินที่ถูกเขียน nifi ≤ L ,
i = 1 , 2 เนื่องจากข้อจำกัดนี้จะผูกในสมดุล มันสามารถถูกใช้เพื่อขจัด N1 ซึ่ง
สามารถเขียน N1 = l / F1 .แทนใน ( 8 ) , P1 การคูณ−−τ / N1 ในระยะกลายเป็น
P1 −τ− F1 / ลิตร ซึ่งมีฟังก์ชันนั้นขึ้นอยู่กับตัวแปรที่เลือกและ P1
F1 .
ในการสร้างแบบจำลองการตัดสินใจของสายการบิน เป็นคำถามที่สำคัญเกี่ยวกับระยะเวลาของการเลือก ในขณะที่
เที่ยวบินทั้งความถี่และอัตราที่สามารถปรับได้ค่อนข้างง่าย เมื่อปรากฏว่าจะมีมากขึ้น
ยืดหยุ่นกว่าความถี่ . ผลภายใต้วิธีการที่เหมือนจริงมากที่สุด ค่าโดยสารจะถูกเลือกขึ้นอยู่กับความถี่
ที่ตัวเองจะถูกตั้งค่าในขั้นตอนแรกการ secondstage
ผลกระทบต่ออัตราค่าโดยสารในบัญชี ( ผลเป็น subgame สมบูรณ์แบบสมดุลของแนช ) .
การวิเคราะห์ในที่สุด adopts วิธีนี้ แต่มันก็เป็นประโยชน์ที่จะเริ่มต้นโดยการพิจารณาน้อยลง
8
มีเหตุผลที่อัตราค่าโดยสารและความถี่จะเลือกพร้อมกันในแนช แฟชั่น ภายใต้วิธีนี้
, สายการบิน 1 พร้อมกันชุดระดับ P1 P2 F1 F2 และ ถ่ายและเป็นพารามิเตอร์ .
แรกสภาพปัญหาเลือกพร้อมกันเป็น∂π 1
∂ P1
= 1 −−− τ P1 F1 / l
α
= 0 ( 9 )
∂∂π 1 F1
= −
L
1
2
[ − 1 α P1 P2 γ−−γ / F1 / F2 ]
γ ( P1 τ−− F1 / L )
α F2
θ− 1 = 0 ( 10 )
ในขณะที่อนุพันธ์∂ 2 π 1 / ∂ความแปรปรวนทางอารมณ์ และ∂
2 π 1 / ∂ F2
1 จะเห็นได้อย่างง่ายดายที่จะถูกลบเหลือ
ที่สองเงื่อนไข ( ทั้งของกระสอบเมทริกซ์π 1 ) จะถือว่าจับ 11
ให้สมมาตรของการตั้งค่าที่สมดุลสุดๆ และความถี่จะสมมาตร
ข้ามพาหะที่มีค่าทั้ง P และ F และการจราจรของแต่ละสายการบินจะเท่ากับ 1 / 2
รบกวนเงื่อนไขหลังใน ( 9 ) และการจัดเรียง , ค่าโดยสารสามารถเขียน
p = α / 2 τ F / L . ( 11 )
ดังนั้นค่าโดยสารเท่ากับต้นทุนเต็มรูปแบบของเบาะนั่งให้โดยค่าใช้จ่ายτบวกเสียง
ลดต้นทุนต่อที่นั่ง ( F / L ) 12 พลัสมาร์กอัปที่ขึ้นอยู่กับความภักดีในแบรนด์ หมายเหตุ ที่
เป็นขอบเขตของความภักดีแบรนด์ขึ้นสู่ที่สูงα / 2 , ผู้เข้าชมน้อยลงจาก
.เพิ่มค่าโดยสารของ ดังนั้น P เพิ่มขึ้น
หลังแทน ( 11 ) ( 10 ) และการสมมาตร สมการที่สามารถแก้ไขได้สำหรับ
สมดุล ความถี่ ซึ่งเท่ากับ
F =
γ
2 θ / l
( 12 )
วิธีนี้แสดงให้เห็นว่าความถี่ที่เพิ่มขึ้นใน disutility กำหนดการล่าช้า ( γ ) และ
ลดลงในต้นทุนคงที่ต่อเที่ยวบิน ( θ ) ทั้งธรรมชาติ สรุป เนื่องจากค่าโดยสารใน ( 11 )
เพิ่มความถี่ , p จากนั้นเพิ่มγและลดลงในθ . ทราบว่าสุดท้าย
9
สรุปที่บอกว่า P เป็นตรงกันข้ามที่เกี่ยวข้องกับต้นทุนคงที่ต่อเที่ยวบินเป็น counterintuitive .
อธิบายคือการลดลงในบริการคุณภาพจากที่สูงθลด
ความเต็มใจที่จะจ่ายสำหรับการเดินทางทางอากาศ สังเกตว่า f เป็นอิสระของต้นทุนค่าใช้จ่าย
ที่นั่ง( τ ) และขอบเขตของความภักดีต่อตราสินค้า ( α ) . 13
คีย์เปรียบเทียบสถิตคำถาม อย่างไรก็ตาม ความกังวลเกี่ยวกับผลของสัญญาณรบกวนในวงเงิน L
ตัวแปรทางเลือกของสายการบิน เมื่อเสียงได้อย่างผ่อนคลาย โดยการเพิ่ม l ( 12 ) แสดงให้เห็นว่า
ที่ความถี่เพิ่มขึ้นด้วย ส่วนการแสดงออกแคบลง สรุปนี่คือ
ธรรมชาติตั้งแต่ ฉัน มาสายการบินสามารถเพิ่ม F ให้ N โดยไม่ละเมิดข้อจำกัด .
L ปรากฏในอัตราส่วนและรูปแบบ ( 12 ) , ข้อสรุปที่ตรงข้ามกับการเพิ่มขึ้นใน
: โดยเพิ่มค่าใช้จ่ายต่อเที่ยวบินต้นทุนลดเสียงสูงช่วยลดความถี่ .
เปลี่ยนผลกระทบของฉันบน P ผลที่ได้คือไม่แจ่มแจ้งทันทีระบุว่ามี
pผกผันโดยตรงจากการพึ่งพาฉัน ( 11 ) รวมทั้งการอ้อมผ่าน F . อย่างไรก็ตาม , หลังจาก
แทน ( 12 ) ( 11 ) และใหม่ เทอมสุดท้ายลดให้
γ 2 / 2 θ L2 L ) ซึ่ง
ลดลงใน . ดังนั้น ผ่อนคลายจากเสียง ข้อจำกัดไปสู่สมดุล
ค่าโดยสารลดลง สรุปว่า แสดงให้เห็นว่าต้นทุนของสายการบินได้รับผลกระทบไปด้วย
คุณภาพบริการ( ฉ ) โดย stringency ของการควบคุมเสียง และตั้งแต่ฉัน ระบุ asymmetrically ในการแสดงออกก่อนหน้านี้
, ผลกระทบของพวกเขาจะไม่มีกระจกภาพ แต่ก็สามารถเห็นได้ว่าสีหน้า
เพิ่มขึ้นใน ดังนั้นค่าโดยสารย่อมเพิ่มขึ้นด้วยต้นทุนลด
เงียบอากาศยานและขนาด , N และ S สามารถกู้คืนจากโซลูชั่น F ,
ให้เพิ่มเติมการเปรียบเทียบแบบคงที่ผลที่จะได้รับ . เมื่อ s = Q / f = 1 / ห้อง 2F , พารามิเตอร์ต่อ
ขนาดเครื่องบินกับผู้ที่อยู่ในความถี่ของเที่ยวบิน กับ N = L / F , ทดแทน ( 12 )
ผลผลิต
n =
2 θ L2 γ L
( 13 )
n ดังนั้นที่เพิ่มขึ้นและ ธรรมชาติ สรุป ดังนั้น ความเงียบอากาศยานตก ( n
สูงขึ้น ) เป็นเสียงรบกวนได้อย่างผ่อนคลาย หรือต้นทุนของการเพิ่มลดนอกจากนี้ ( 13 )
แสดงว่าสูงกว่าต้นทุนคงที่ต่อเที่ยวบิน ( N , ในขณะที่การเพิ่มขึ้นในการ disutility ได้
ตรงกันข้าม ทั้งหมดของผลลัพธ์เหล่านี้เปรียบเทียบคงสรุปไว้ในตารางที่ 1
การแปล กรุณารอสักครู่..
