Suspensions are one of the most important mixtures which are used in various industries. Particle migration is of significant importance in flow of suspensions. Several studies have been conducted on the mechanisms of particle migration in suspensions containing micron-sized particles. A phenomenological model for particle migration was first proposed by Leighton and Acrivos [1] and [2] in a shear-induced flow, which assigned the particle migration to irreversible interactions. They offered an expression for diffusion flux of particles in a simple shear flow [1]. Thereafter, Phillips et al. [3] modified this expression and transformed it into a diffusion equation to find the particle concentration. Lam et al. [4] examined particle migration in concentrated suspensions of micron-sized particles. They concluded that the concentration has the minimum value adjacent to wall and quickly increases to reach its maximum at r/R ≈ 0.8–0.9, followed by an additional reduction toward the center of the tube. This observation was attributed to shear-thinning effect of the concentrated suspensions. The studies implemented so far show that the suspensions with spherical particles have a non-uniform concentration distribution in a non-homogeneous shear flow [1], [5], [6], [7], [8] and [9]. Some researchers have utilized Laser Doppler Anemometry (LDA) techniques in their works [10] and [11]. Phillips et al. [3], Abbot et al. [12] and Chow et al. [13] measured the concentration profiles for concentrated suspensions in a gap Couette device using nuclear magnetic resonance.
Unlike suspensions containing micron-sized particles, a few studies have evaluated particle migration in suspensions containing nanoparticles (or nanofluids). Nanoparticle-containing flows are seen in an extensive range of engineering problems. The research on nanofluids has become one of the hottest area in engineering [14]. Particularly, the nanoparticle-containing flows in pipes have numerous applications such as enhanced heat transfer in heat exchangers and cooling of electronic devices. Their marvelous enhancement in heat transfer has been the most important reason for widespread use of nanofluids in recent years. A literature review reveals that the enhanced heat transfer induced by nanofluids can be caused by the presence of nanoparticles in base fluid [15], Brownian and thermophoresis diffusions [16], increased thermal conductivity [17], energy transfer via nanoparticle dispersion [18] and [19] as well as molecular-level layering of the liquid at the liquid–particle interface [20].
Some controversial results are found in the literature associated with nanofluids [21]. Therefore, it is very important to understand the flow behavior and particle migration in nanofluids in order to make application of nanofluids feasible in the near future. How the nanoparticles move in nanofluid as a heat transfer medium is of great importance. Wen and Ding [22] investigated movement of the nanoparticles in laminar pressure-driven pipe flows for dilute suspensions. They demonstrated that the particle concentration near the wall is noticeably lower than that at the tube center. Buongiorno utilized a model comprised of four equations to consider the effects of particle migration in nanofluids [16].
Two different approaches have been adopted in the literature to simulate flow and heat transfer of nanofluids, namely single-phase and two-phase. The former considers nanofluid as a homogeneous fluid with effective properties, assuming that solid and liquid phases are at thermal equilibrium with zero relative velocity. On the other hand, the latter takes into account relevant forces and interactions between solid particles and base fluid. The implemented studies show that one may achieve results close to experimental ones by homogeneous assumption since the particles are very small [23] and [24]. Although the two-phase approach provides very good results [25], [26] and [27], it requires a great calculation time.
Particle migration may cause non-uniformity in particle distribution for flowing nanofluids, which will in turn affect the overall heat transfer performance. When the concentration shows non-uniform distribution at a specific cross section, the effective properties will also incorporate non-uniform distributions. Therefore, application of a proper concentration distribution is crucially important in analysis of nanofluid problems, which has been overlooked in the single-phase approach. The studies which have employed the single-phase approach so far, have considered a uniform particle distribution. However, the particles can migrate under the conditions of shear and viscosity gradient [1], such that using the uniform concentration will introduce error to the results.
In order to find the concentration distribution, it is required to take into account the effective mechanisms on particle migration. Applying the effects of particle migration in the single-phase approach can lead to acceptably accurate results with lower computational volume in comparison with the two-phase approaches. The key point in the single-phase method is the use of correct effective properties in the conservation equations.
One of the methods that can be used to control the heat transfer process is to apply magnetic fields [28]. Rashidi and Keimanesh [29] applied the differential transform method (DTM) and Pad'e approximant to construct analytical approximate solutions of the heat transfer in a liquid film over an unsteady stretching surface with viscous dissipation in the presence of external magnetic field. They showed that the DTM-Pad'e method is an excellent method for solving MHD boundary-layer equations. Malvandi and Ganji [30] investigated the laminar flow and convective heat transfer of water/alumina nanofluid inside a parallel-plate channel in the presence of a uniform magnetic field. Their results indicated that nanoparticles move from the heated walls toward the core region of the channel. Moreover, it was shown that in the presence of the magnetic field, the near wall velocity gradients increase, enhancing the slip velocity and thus the heat transfer rate as well as the pressure drop.
Recently, magnetic nanofluids have been of much interest because of their unique optical, electronic, and magnetic properties, which can be changed by applying an external magnetic field [31]. Magnetic nanofluids, suspensions containing magnetic nanoparticles such as magnetite (Fe3O4), iron (Fe), nickel (Ni), and cobalt (Co), show both magnetic and fluid properties and have important applications in industries [32] and [33]. Magnetic nanofluids can be deemed as a new class of magnetic materials with a great potential for being used in different areas of heat transfer, medicine and nanotechnology. Just a few studies have been conducted on heat transfer characteristics of magnetic nanofluids. Parekh and Lee [34] noticed a 30% increase in thermal conductivity of Fe3O4 nanofluid at concentration of 4.7% in the temperature range of 25 to 65 °C. Yu et al. [35] investigated the kerosene based Fe3O4 nanofluids and oleic acid and achieved a 34% rise in thermal conductivity at concentration of 1%. Aminfar et al. [36] reported the hydrodynamics and thermal behavior of a magnetic nanofluid (kerosene and 4 vol.% Fe3O4) in a vertical tube under the effect of a non-uniform magnetic field using the two-phase mixture model. They concluded that the magnetic field with negative gradient acts similar to buoyancy force and augments the Nusselt number, while the magnetic field with positive gradient decreases it. Sundar et al. [37] studied the convective heat transfer coefficient and friction coefficient of water–Fe3O4 nanofluid experimentally. Two correlations were developed in their study based on the experimental data for the estimation of Nusselt number and friction coefficient.
The effects of particle migration have been rarely addressed in the literature for nanofluids. In the current study, the concentration distribution is obtained considering the effective factors on particle migration and then employed in numerical analysis in order to study flow and heat transfer characteristics of the water–Fe3O4 magnetic nanofluid. The effects of some parameters like particle concentration, Reynolds number and particle size are assessed. To the best knowledge of the author, this is the first study which evaluates the effects of particle migration on magnetic nanofluids.
บริการเป็นหนึ่งในส่วนผสมสำคัญที่ใช้ในอุตสาหกรรมต่าง ๆ ย้ายอนุภาคเป็นสำคัญอย่างมีนัยสำคัญในขั้นตอนของบริการ มีการดำเนินการศึกษาหลายในกลไกของการย้ายอนุภาคในบริการที่ประกอบด้วยอนุภาคขนาดไมครอน แบบ phenomenological สำหรับย้ายอนุภาคแรกถูกเสนอ โดย Leighton และ Acrivos [1] และ [2] ในการเฉือนทำให้เกิด กระแส ซึ่งการย้ายอนุภาคให้โต้ตอบให้ พวกเขาเสนอค่าสำหรับฟลักซ์การแพร่ของอนุภาคในกระแสแรงเฉือนง่าย [1] หลังจากนั้น ไขควง et al. [3] ปรับเปลี่ยนนิพจน์นี้ และเปลี่ยนเป็นสมการการแพร่หาความเข้มข้นของอนุภาค ลำ et al. [4] ตรวจสอบอนุภาคการโยกย้ายในพักที่เข้มข้นของอนุภาคขนาดไมครอน พวกเขาสรุปว่า ความเข้มข้นมีค่าต่ำสุดที่ติดกับผนังและรวดเร็วขึ้นถึงสูงสุดที่ r/R ≈ 0.8 – 0.9 ตาม ด้วยลดลงเพิ่มเติมไปยังศูนย์กลางของท่อ เก็บข้อมูลนี้ถูกบันทึกผลบางแรงเฉือนของพักเข้มข้น ศึกษาปฏิบัติจนแสดงว่า พักกับอนุภาคทรงกลมมีการกระจายไม่สม่ำเสมอความเข้มข้นในการเฉือนไม่เหมือนกระแส [1], [5], [6], [7], [8] และ [9] นักวิจัยบางส่วนได้ใช้เทคนิค Anemometry Doppler ของเลเซอร์ (LDA) ในการปฏิบัติงาน [10] [11] ไขควง et al. [3], al. และเจ้าอาวาส [12] และชาวร้อยเอ็ด al. [13] โดยวัดค่าความเข้มข้นสำหรับบริการเข้มข้นอุปกรณ์ Couette ช่องว่างโดยใช้การสั่นพ้องแม่เหล็กนิวเคลียร์ซึ่งแตกต่างจากบริการที่ประกอบด้วยอนุภาคขนาดไมครอน กี่ศึกษาได้ประเมินการย้ายอนุภาคในบริการที่ประกอบด้วยการเก็บกัก (หรือ nanofluids) เห็น Nanoparticle ที่ประกอบด้วยขั้นตอนในหลากหลายของปัญหาทางวิศวกรรม วิจัยใน nanofluids ได้กลายเป็นหนึ่งในพื้นที่ที่ร้อนแรงที่สุดในวิศวกรรม [14] โดยเฉพาะ nanoparticle ที่ประกอบด้วยขั้นตอนในท่อมีการถ่ายเทความร้อนเช่นเพิ่มโปรแกรมประยุกต์หลายในการแลกเปลี่ยนความร้อนและระบายความร้อนของอุปกรณ์อิเล็กทรอนิกส์ เพิ่มประสิทธิภาพของพวกเขายิ่งใหญ่ในการถ่ายเทความร้อนแล้วเหตุผลสำคัญที่สุดสำหรับการใช้อย่างแพร่หลายของ nanofluids ในปีที่ผ่านมา ทบทวนวรรณกรรมพบว่าการถ่ายโอนความร้อนที่เพิ่มขึ้นเกิดจาก nanofluids อาจเกิดจากการนำความร้อนของสถานะของการเก็บกักน้ำมันพื้นฐาน [15], ที่แบบบราวน์ และ thermophoresis diffusions [16], เพิ่มขึ้น [17], พลังงานโอนผ่าน nanoparticle เธน [18] และ [19] และ layering ระดับโมเลกุลของของเหลวที่อินเทอร์เฟสของเหลว – อนุภาค [20]พบผลลัพธ์บางอย่างแย้งในวรรณกรรมที่เกี่ยวข้องกับ nanofluids [21] ดังนั้น จึงเป็นสิ่งสำคัญมากที่จะเข้าใจขั้นตอนการทำงานและอนุภาคโยกย้ายใน nanofluids เพื่อให้โปรแกรมประยุกต์ของ nanofluids เป็นไปได้ในอนาคตอันใกล้ วิธีการย้ายเก็บกักใน nanofluid เป็นสื่อถ่ายโอนความร้อนเป็นสำคัญยิ่ง เหวินตี้และดิง [22] ตรวจสอบเคลื่อนย้ายเก็บกักใน laminar ขับเคลื่อนความดันท่อไหลสำหรับบริการ dilute ก็แสดงว่าความเข้มข้นของอนุภาคใกล้ผนังอย่างเห็นได้ชัดกว่าที่ตัวหลอด Buongiorno ใช้แบบจำลองที่ประกอบด้วยสมการที่สี่เพื่อพิจารณาผลกระทบของการย้ายอนุภาคใน nanofluids [16]สองวิธีที่แตกต่างกันได้รับการรับรองในวรรณคดีเพื่อจำลองการโอนความร้อนและกระแสของ nanofluids, two-phase และเฟสได้แก่ อดีตพิจารณา nanofluid เป็นน้ำมันเหมือนกับสมบัติที่มีประสิทธิภาพ การสมมติที่เป็นของแข็ง และเฟสของเหลวอยู่ในสมดุลความร้อนกับความเร็วสัมพัทธ์เป็นศูนย์ บนมืออื่น ๆ หลังใช้เป็นกองกำลังที่เกี่ยวข้องบัญชีและระหว่างอนุภาคของแข็งและน้ำมันพื้นฐาน การดำเนินศึกษาหนึ่งอาจให้ผลใกล้กับคนทดลองโดยเหมือนอัสสัมชัญเนื่องจากอนุภาคมีมากและขนาดเล็ก [23] [24] แม้ว่าวิธี two-phase ให้ผลลัพธ์ดีมาก [25], [26] และ [27], มันต้องใช้เวลาคำนวณมากขึ้นย้ายอนุภาคอาจทำให้ไม่รื่นรมย์ในกระจายอนุภาคไหล nanofluids ซึ่งจะใช้ส่งผลต่อประสิทธิภาพการถ่ายโอนความร้อนโดยรวม เมื่อความเข้มข้นที่แสดงการกระจายไม่สม่ำเสมอที่ส่วนข้ามเฉพาะ คุณสมบัติที่มีประสิทธิภาพจะยังรวมการกระจายไม่สม่ำเสมอ ดังนั้น โปรแกรมประยุกต์การกระจายความเข้มข้นที่เหมาะสมมีอำนาจสำคัญในการวิเคราะห์ปัญหา nanofluid ซึ่งได้ถูกมองข้ามในวิธีด ศึกษาซึ่งได้รับการว่าจ้างวิธีดจน มีพิจารณาการกระจายของอนุภาคที่สม่ำเสมอ อย่างไรก็ตาม อนุภาคสามารถโยกย้ายภายใต้เงื่อนไขของแรงเฉือนและความหนืดการไล่ระดับสี [1], เช่นที่ใช้ความเข้มข้นสม่ำเสมอจะแนะนำข้อผิดพลาดผลลัพธ์ได้เพื่อค้นหาการกระจายความเข้มข้น มันจะต้องคำนึงถึงกลไกที่มีประสิทธิภาพบนย้ายอนุภาค ใช้ผลกระทบของการย้ายอนุภาคในวิธีดอาจทำให้ผลลัพธ์ที่ถูกต้อง acceptably ด้วยปริมาณการคำนวณลดลงเมื่อเปรียบเทียบกับวิธี two-phase ประเด็นสำคัญในวิธีดคือ การใช้คุณสมบัติที่มีประสิทธิภาพถูกต้องในสมการอนุรักษ์หนึ่งในวิธีที่สามารถใช้ในการควบคุมกระบวนการถ่ายโอนความร้อน คือการใช้สนามแม่เหล็ก [28] Rashidi และ Keimanesh [29] ใช้วิธีแปลงส่วนที่แตกต่าง (DTM) และเสียงเปิด Pad'e เพื่อสร้างโซลูชั่นประมาณวิเคราะห์ของการถ่ายโอนความร้อนในฟิล์มของเหลวบนพื้นผิวยืดเป็น unsteady กับกระจายความหนืดในต่อหน้าของสนามแม่เหล็กภายนอก พวกเขาพบว่า วิธี DTM Pad'e เป็นวิธีที่ดีสำหรับการแก้สมการชั้นขอบ MHD Malvandi และ Ganji [30] สอบสวน laminar ไหลและถ่ายเทความร้อนด้วยการพาของน้ำ/อลูมินา nanofluid ภายในช่องแผ่นขนานในต่อหน้าของสนามแม่เหล็กสม่ำเสมอ ผลของพวกเขาระบุว่า เก็บกักย้ายจากผนังอุ่นไปทางภูมิภาคหลักของสถานี นอกจากนี้ มันถูกแสดงว่า ในต่อหน้าของสนามแม่เหล็ก ไล่ระดับสีความเร็วผนังใกล้ เพิ่ม เพิ่มความเร็วในการจัดส่ง และดังนั้น การลดลงของอัตราการถ่ายโอนความร้อนรวมทั้งแรงกดดันล่าสุด nanofluids แม่เหล็กได้มากสนใจเนื่องจากตนเฉพาะแสง อิเล็กทรอนิกส์ และคุณสมบัติแม่เหล็ก ซึ่งสามารถเปลี่ยนแปลงได้ โดยใช้เป็นสนามแม่เหล็กภายนอก [31] บริการที่ประกอบด้วยการเก็บกัก เช่น magnetite (Fe3O4), เหล็ก (Fe), นิกเกิล (Ni), โคบอลต์ (Co), แม่เหล็ก แม่เหล็ก nanofluids แสดงคุณสมบัติแม่เหล็ก ทั้งของเหลว และมีโปรแกรมประยุกต์ที่สำคัญในอุตสาหกรรม [32] [33] Nanofluids แม่เหล็กสามารถถือว่าเป็นคลาสใหม่ของวัสดุแม่เหล็กที่มีศักยภาพดีสำหรับใช้ในพื้นที่ต่าง ๆ ของการถ่ายเทความร้อน ยา และนาโนเทคโนโลยี ได้ดำเนินการศึกษาเพียงไม่กี่ลักษณะการถ่ายโอนความร้อนของแม่เหล็ก nanofluids Parekh และลี [34] พบ 30% เพิ่มขึ้นในการนำความร้อนของ Fe3O4 nanofluid ที่ความเข้มข้นของ 4.7% ในช่วงอุณหภูมิ 25-65 องศาเซลเซียส Al. ร้อยเอ็ดยู [35] ตรวจสอบน้ำมันก๊าดตาม Fe3O4 nanofluids และกรด oleic และสำเร็จ 34% เพิ่มขึ้นในการนำความร้อนที่ความเข้มข้น 1% Aminfar et al. [36] รายงานศาสต์และลักษณะการทำงานความร้อนของตัวแม่เหล็ก nanofluid (น้ำมันก๊าดและ 4 vol.% Fe3O4) ในท่อแนวตั้งภายใต้ผลของสนามแม่เหล็กไม่สม่ำเสมอการใช้แบบผสม two-phase พวกเขาสรุปว่า สนามแม่เหล็ก มีการไล่ระดับสีลบทำหน้าที่คล้ายกับแรงพยุง และ augments หมาย Nusselt ในขณะที่สนามแม่เหล็ก มีการไล่ระดับสีบวกลดลง Al. ร้อยเอ็ด Sundar [37] ศึกษาสัมประสิทธิ์การถ่ายโอนความร้อนด้วยการพาและสัมประสิทธิ์แรงเสียดทานของน้ำ – Fe3O4 nanofluid experimentally ความสัมพันธ์ทั้งสองได้รับการพัฒนาในการศึกษาตามข้อมูลทดลองสำหรับการประเมินจำนวนและแรงเสียดทานสัมประสิทธิ์ Nusseltส่งผลกระทบของการย้ายอนุภาคในวรรณคดีสำหรับ nanofluids ไม่ค่อย ในการศึกษาปัจจุบัน การกระจายความเข้มข้นจะได้พิจารณาปัจจัยมีผลบังคับใช้ในย้ายอนุภาคแล้ว พนักงานในการวิเคราะห์เชิงตัวเลขเพื่อศึกษาขั้นตอน และความร้อนถ่ายโอนลักษณะของ nanofluid แม่เหล็กน้ำ – Fe3O4 ผลของพารามิเตอร์บางอย่างเช่นความเข้มข้นของอนุภาค เรย์โนลด์สเป็นประเมินขนาดจำนวนและอนุภาค ความรู้ที่ดีที่สุดของผู้เขียน นี้เป็นการศึกษาแรกที่ประเมินผลกระทบของการย้ายอนุภาคบนแม่เหล็ก nanofluids
การแปล กรุณารอสักครู่..

แขวนลอยเป็นหนึ่งในสารผสมที่สำคัญที่สุดที่ใช้ในอุตสาหกรรมต่างๆ การย้ายถิ่นของอนุภาคมีความสำคัญอย่างมีนัยสำคัญในการไหลของสารแขวนลอย งานวิจัยหลายชิ้นที่ได้รับการดำเนินการเกี่ยวกับกลไกของการย้ายถิ่นของอนุภาคแขวนลอยในที่มีอนุภาคขนาดไมครอน รูปแบบปรากฏการณ์วิทยาสำหรับการโยกย้ายอนุภาคถูกเสนอครั้งแรกโดยเลห์และ Acrivos [1] และ [2] ในการไหลแรงเฉือนที่เกิดขึ้นซึ่งได้รับมอบหมายการย้ายถิ่นของอนุภาคที่จะมีปฏิสัมพันธ์กลับไม่ได้ พวกเขาเสนอการแสดงออกสำหรับการไหลของการแพร่กระจายของอนุภาคในการไหลเฉือนง่าย [1] หลังจากนั้นฟิลลิปเอตอัล [3] การปรับเปลี่ยนการแสดงออกนี้และเปลี่ยนให้มันเป็นสมการแพร่กระจายที่จะพบความเข้มข้นของอนุภาค ลำ et al, [4] การตรวจสอบการย้ายถิ่นของอนุภาคแขวนลอยในความเข้มข้นของอนุภาคขนาดไมครอน พวกเขาสรุปว่ามีความเข้มข้นมีค่าต่ำสุดที่อยู่ติดกับผนังได้อย่างรวดเร็วและเพิ่มขึ้นไปถึงสูงสุดที่อาร์ / R ≈ 0.8-0.9 ตามการลดลงเพิ่มเติมไปยังศูนย์ของหลอด ข้อสังเกตนี้เป็นผลมาจากผลเฉือนผอมบางของสารแขวนลอยเข้มข้น การศึกษาการดำเนินการเพื่อให้ห่างไกลแสดงให้เห็นว่าสารแขวนลอยที่มีอนุภาคทรงกลมมีการกระจายความเข้มข้นไม่เหมือนกันในการไหลแรงเฉือนที่ไม่เหมือนกัน [1] [5] [6] [7] [8] และ [9] นักวิจัยบางคนได้ใช้เลเซอร์ Doppler Anemometry (LDA) เทคนิคในการทำงานของพวกเขา [10] และ [11] ฟิลลิปเอตอัล [3] เจ้าอาวาส et al, [12] และโจวเอตอัล [13] วัดความเข้มข้นของโปรไฟล์สำหรับสนองความเข้มข้นในเครื่อง Couette ช่องว่างโดยใช้แม่เหล็กนิวเคลียร์. ซึ่งแตกต่างจากสารแขวนลอยที่มีอนุภาคขนาดไมครอนที่มีการศึกษาน้อยมีการประเมินการโยกย้ายอนุภาคแขวนลอยในอนุภาคนาโนที่มี (หรือ nanofluids) อนุภาคนาโนที่มีกระแสจะเห็นในช่วงที่กว้างขวางของปัญหาทางวิศวกรรม งานวิจัยเกี่ยวกับ nanofluids ได้กลายเป็นหนึ่งในพื้นที่ที่ร้อนแรงที่สุดในงานวิศวกรรม [14] โดยเฉพาะอย่างยิ่งกระแสอนุภาคนาโนที่มีในท่อมีการใช้งานมากมายเช่นการถ่ายเทความร้อนที่เพิ่มขึ้นในการแลกเปลี่ยนความร้อนและความเย็นของอุปกรณ์อิเล็กทรอนิกส์ การเพิ่มประสิทธิภาพที่ยิ่งใหญ่ของพวกเขาในการถ่ายโอนความร้อนได้รับเหตุผลที่สำคัญที่สุดสำหรับการใช้งานอย่างแพร่หลายของ nanofluids ในปีที่ผ่านมา การทบทวนวรรณกรรมแสดงให้เห็นว่าการถ่ายเทความร้อนที่เพิ่มขึ้นเกิดจาก nanofluids อาจเกิดจากการปรากฏตัวของอนุภาคนาโนของเหลวในฐาน [15], Brownian และ diffusions thermophoresis [16], การนำความร้อนที่เพิ่มขึ้น [17], การถ่ายโอนพลังงานผ่านการกระจายตัวของอนุภาคนาโน [18] และ [19] เช่นเดียวกับชั้นโมเลกุลระดับของของเหลวที่อินเตอร์เฟซของเหลวอนุภาค [20]. บางผลการขัดแย้งที่พบในวรรณกรรมที่เกี่ยวข้องกับการ nanofluids [21] ดังนั้นจึงเป็นสิ่งสำคัญมากที่จะเข้าใจพฤติกรรมการไหลและการย้ายถิ่นของอนุภาคใน nanofluids เพื่อที่จะทำให้การประยุกต์ใช้ nanofluids เป็นไปได้ในอนาคตอันใกล้ วิธีอนุภาคนาโนย้ายไปในของไหลนาโนเป็นสื่อกลางในการถ่ายเทความร้อนมีความสำคัญมาก เหวินและ Ding [22] การตรวจสอบการเคลื่อนไหวของอนุภาคนาโนในท่อแรงดันขับเคลื่อนราบเรียบไหลสำหรับเจือจางสารแขวนลอย พวกเขาแสดงให้เห็นว่ามีความเข้มข้นของอนุภาคที่อยู่ใกล้ผนังเห็นได้ชัดคือต่ำกว่าที่ศูนย์หลอด Buongiorno ใช้รูปแบบประกอบด้วยสี่สมการที่จะต้องพิจารณาผลกระทบของการย้ายถิ่นของอนุภาคใน nanofluids [16]. สองวิธีที่แตกต่างได้รับการรับรองในวรรณคดีเพื่อจำลองการไหลและการถ่ายโอนความร้อนของ nanofluids คือเฟสเดียวและสองเฟส อดีตพิจารณาของไหลนาโนเป็นของเหลวเนื้อเดียวกันที่มีคุณสมบัติที่มีประสิทธิภาพสมมติว่าขั้นตอนเป็นของแข็งและของเหลวที่มีความสมดุลความร้อนกับศูนย์ความเร็วสัมพัทธ์ ในทางตรงกันข้ามหลังกองกำลังจะเข้าสู่บัญชีที่เกี่ยวข้องและการมีปฏิสัมพันธ์ระหว่างอนุภาคของแข็งและของเหลวฐาน การศึกษาแสดงให้เห็นว่าการดำเนินการอย่างใดอย่างหนึ่งอาจบรรลุผลอย่างใกล้ชิดกับคนที่ทดลองโดยสมมติฐานที่เป็นเนื้อเดียวกันตั้งแต่อนุภาคที่มีขนาดเล็กมาก [23] และ [24] แม้ว่าวิธีการสองเฟสให้ผลดีมาก [25] [26] และ [27] มันต้องใช้เวลาในการคำนวณที่ดี. การย้ายถิ่นของอนุภาคอาจก่อให้เกิดความสม่ำเสมอไม่ใช่ในการกระจายอนุภาคไหล nanofluids ซึ่งจะเปิดในการส่งผลกระทบโดยรวม ประสิทธิภาพการถ่ายเทความร้อน เมื่อความเข้มข้นแสดงการกระจายไม่สม่ำเสมอที่ตัดขวางเฉพาะคุณสมบัติที่มีประสิทธิภาพนอกจากนี้ยังจะรวมการกระจายไม่สม่ำเสมอ ดังนั้นการประยุกต์ใช้การกระจายความเข้มข้นที่เหมาะสมเป็นสิ่งสำคัญอย่างมากในการวิเคราะห์ปัญหาของไหลนาโนซึ่งได้รับการมองข้ามในวิธีเฟสเดียว การศึกษาที่มีการจ้างงานวิธีการเฟสเดียวเพื่อให้ห่างไกลได้มีการพิจารณาการกระจายของอนุภาคเครื่องแบบ อย่างไรก็ตามอนุภาคสามารถโยกย้ายภายใต้เงื่อนไขของแรงเฉือนและการไล่ระดับความหนืด [1] เช่นว่าการใช้ความเข้มข้นสม่ำเสมอจะแนะนำข้อผิดพลาดในผล. เพื่อที่จะหาการกระจายความเข้มข้นก็จะต้องคำนึงถึงกลไกที่มีประสิทธิภาพใน การย้ายถิ่นของอนุภาค ใช้ผลของการย้ายถิ่นของอนุภาคในวิธีเฟสเดียวสามารถนำไปสู่ผลลัพธ์ที่ถูกต้องยอมรับกับการคำนวณปริมาณที่ต่ำกว่าเมื่อเทียบกับวิธีการสองเฟส จุดสำคัญในวิธีเฟสเดียวคือการใช้คุณสมบัติที่มีประสิทธิภาพถูกต้องในสมการอนุรักษ์. หนึ่งในวิธีการที่สามารถนำมาใช้ในการควบคุมกระบวนการถ่ายโอนความร้อนคือการใช้สนามแม่เหล็ก [28] Rashidi และ Keimanesh [29] นำไปใช้ที่แตกต่างกันเปลี่ยนวิธีการ (DTM) และ Pad'e approximant เพื่อสร้างโซลูชั่นการวิเคราะห์โดยประมาณของการถ่ายโอนความร้อนในภาพยนตร์ที่มีสภาพคล่องมากกว่าพื้นผิวที่ยืดไม่มั่นคงกับการกระจายความหนืดในการปรากฏตัวของสนามแม่เหล็กภายนอก พวกเขาแสดงให้เห็นว่าวิธีการ DTM-Pad'e เป็นวิธีที่ดีสำหรับการแก้สมการ MHD เขตแดนชั้น Malvandi และ Ganji [30] ตรวจสอบไหลและการพาความร้อนของน้ำ / อลูมิของไหลนาโนภายในช่องคู่ขนานจานในที่ที่มีสนามแม่เหล็กสม่ำเสมอ ผลของพวกเขาแสดงให้เห็นว่าอนุภาคนาโนย้ายจากผนังอุ่นที่มีต่อภูมิภาคหลักของช่อง นอกจากนี้ยังแสดงให้เห็นว่าในการปรากฏตัวของสนามแม่เหล็กในการไล่ระดับสีความเร็วผนังใกล้เพิ่มขึ้นเพิ่มความเร็วลื่นและทำให้อัตราการถ่ายโอนความร้อนเช่นเดียวกับความดันลดลง. เมื่อเร็ว ๆ นี้ nanofluids แม่เหล็กได้รับความสนใจมากเพราะของพวกเขา ที่ไม่ซ้ำกันแสงอิเล็กทรอนิกส์และคุณสมบัติของแม่เหล็กซึ่งสามารถเปลี่ยนแปลงได้โดยใช้สนามแม่เหล็กภายนอก [31] nanofluids แม่เหล็ก, สารแขวนลอยที่มีอนุภาคนาโนแม่เหล็กเช่นแม่เหล็ก (Fe3O4) เหล็ก (Fe) นิกเกิล (Ni) และโคบอลต์ (ร่วม) แสดงให้เห็นทั้งคุณสมบัติของแม่เหล็กและของเหลวและมีการใช้งานที่สำคัญในอุตสาหกรรม [32] และ [33] nanofluids แม่เหล็กสามารถถือว่าเป็นคลาสใหม่ของวัสดุแม่เหล็กที่มีศักยภาพที่ดีสำหรับการใช้งานในพื้นที่ที่แตกต่างกันของการถ่ายเทความร้อนการแพทย์และนาโนเทคโนโลยี เพียงแค่การศึกษาน้อยได้รับการดำเนินการในลักษณะการถ่ายโอนความร้อนของ nanofluids แม่เหล็ก Parekh และลี [34] สังเกตเห็นการเพิ่มขึ้น 30% ในการนำความร้อนของ Fe3O4 ของไหลนาโนที่ความเข้มข้น 4.7% ในช่วงอุณหภูมิของ 25-65 องศาเซลเซียส Yu et al, [35] การตรวจสอบตามน้ำมันก๊าด nanofluids Fe3O4 และกรดโอเลอิกและประสบความสำเร็จในการเพิ่มขึ้น 34% ในการนำความร้อนที่ความเข้มข้น 1% Aminfar et al, [36] รายงานอุทกพลศาสตร์และพฤติกรรมการระบายความร้อนของของไหลนาโนแม่เหล็ก (น้ำมันก๊าดและ 4 ฉบับ.% Fe3O4) ในหลอดแนวตั้งภายใต้อิทธิพลของสนามแม่เหล็กไม่สม่ำเสมอใช้รูปแบบผสมสองเฟส พวกเขาสรุปว่าสนามแม่เหล็กที่มีความลาดชันเชิงลบทำหน้าที่คล้ายกับแรงลอยตัวและ augments จำนวน Nusselt ขณะที่สนามแม่เหล็กที่มีความลาดชันเชิงบวกลดลงมัน Sundar et al, [37] การศึกษาค่าสัมประสิทธิ์การพาความร้อนและแรงเสียดทานของของไหลนาโนน้ำ Fe3O4 ทดลอง ความสัมพันธ์สองได้รับการพัฒนาในการศึกษาของพวกเขาอยู่บนพื้นฐานของข้อมูลการทดลองสำหรับการประมาณจำนวน Nusselt และค่าสัมประสิทธิ์แรงเสียดทาน. ผลกระทบของการย้ายถิ่นของอนุภาคได้รับการแก้ไขในวรรณคดีไม่ค่อยสำหรับ nanofluids ในการศึกษาในปัจจุบันการกระจายความเข้มข้นจะได้รับการพิจารณาปัจจัยที่มีประสิทธิภาพในการย้ายถิ่นของอนุภาคและการจ้างงานจากนั้นในการวิเคราะห์เชิงตัวเลขเพื่อศึกษาการไหลและลักษณะการถ่ายเทความร้อนของน้ำ Fe3O4 แม่เหล็กของไหลนาโน ผลของพารามิเตอร์บางอย่างเช่นความเข้มข้นของอนุภาคจำนวน Reynolds และขนาดอนุภาคได้รับการประเมิน เพื่อให้ความรู้ที่ดีที่สุดของผู้เขียนนี้เป็นครั้งแรกที่การศึกษาการประเมินผลกระทบของการย้ายถิ่นของอนุภาคใน nanofluids แม่เหล็ก
การแปล กรุณารอสักครู่..
