Telescoping series
From Wikipedia, the free encyclopedia
In mathematics, a telescoping series is a series whose partial sums eventually only have a fixed number of terms after cancellation.[1][2] The cancellation technique, with part of each term cancelling with part of the next term, is known as the method of differences.
For example, the series
{displaystyle sum _{n=1}^{infty }{frac {1}{n(n+1)}}} sum _{{n=1}}^{infty }{frac {1}{n(n+1)}}
(the series of reciprocals of pronic numbers) simplifies as
{displaystyle {egin{aligned}sum _{n=1}^{infty }{frac {1}{n(n+1)}}&{}=sum _{n=1}^{infty }left({frac {1}{n}}-{frac {1}{n+1}}
ight)\{}&{}=lim _{N o infty }sum _{n=1}^{N}left({frac {1}{n}}-{frac {1}{n+1}}
ight)\{}&{}=lim _{N o infty }leftlbrack {left(1-{frac {1}{2}}
ight)+left({frac {1}{2}}-{frac {1}{3}}
ight)+cdots +left({frac {1}{N}}-{frac {1}{N+1}}
ight)}
ight
brack \{}&{}=lim _{N o infty }leftlbrack {1+left(-{frac {1}{2}}+{frac {1}{2}}
ight)+left(-{frac {1}{3}}+{frac {1}{3}}
ight)+cdots +left(-{frac {1}{N}}+{frac {1}{N}}
ight)-{frac {1}{N+1}}}
ight
brack \{}&{}=lim _{N o infty }leftlbrack {1-{frac {1}{N+1}}}
ight
brack =1.end{aligned}}} egin{align}
sum_{n=1}^infty frac{1}{n(n+1)} & {} = sum_{n=1}^infty left( frac{1}{n} - frac{1}{n+1}
ight) \
{} & {} = lim_{N oinfty} sum_{n=1}^N left( frac{1}{n} - frac{1}{n+1}
ight) \
{} & {} = lim_{N oinfty} leftlbrack {left(1 - frac{1}{2}
ight) + left(frac{1}{2} - frac{1}{3}
ight) + cdots + left(frac{1}{N} - frac{1}{N+1}
ight) }
ight
brack \
{} & {} = lim_{N oinfty} leftlbrack { 1 + left( - frac{1}{2} + frac{1}{2}
ight) + left( - frac{1}{3} + frac{1}{3}
ight) + cdots + left( - frac{1}{N} + frac{1}{N}
ight) - frac{1}{N+1} }
ight
brack \
{} & {} = lim_{N oinfty} leftlbrack { 1 - frac{1}{N+1} }
ight
brack = 1.
end{align}