Accurate data collection is essential for appropriate performance analysis and is the key in decision-making. However in
reality, due to a variety of reasons, accurate data are not always readily available or are very difficult to capture. Other difficulties,
such as the non-existence of processes in the “to-be” scenarios also pose great challenges for performance analysis.
Parameters provided by the industry or public domain data sometimes have to be used during the data collection phase. This
gives no guarantee of the accuracy of the performance analysis due to the difference in terms of operational environment,
operational efficiency, data consistency and even the accuracy of the data available. Sometimes, the data sources provided do
not differentiate the types of equipment used and might be at a high aggregated level. One example is in Roso's (2007) study
where the CO2 emission for trucks is estimated as 1 kg/km; while in the study by Liao, Tseng, and Lu (2009), CO2 emission is
estimated as 155 g/tonne km. Clearly, the second data source provides a more accurate measurement since it gauges both
weight and distance.
To remedy such disadvantages brought by these types of data, mathematical or simulation models can be constructed to
enable further investigation of the impacts of different variables. If we take container distribution as an illustrative example,
we can see that in order to transport a certain number of containers, different types of trucks can be used (e.g., B-double,
Super B-double, Super B-triple, etc.). It is possible to work out the number of trips that need to be taken to completely
transport these containers and then treat the CO2 emissions as a variable in mathematical models. This will facilitate the
analysis of the impact of the variable on the overall system.
Sometimes, it is not enough to only look at the mathematical model, since a lot of other factors are also changing. Again
using the container distribution example, it is important to take factors such as the volatile business environment (and
therefore not constant container flows), fast moving fuel prices (therefore no fixed cost for each trip), seasonality demand of
transport equipment (therefore a limitation to the available transport options) into consideration and assess the impacts of
these factors on the decision making process of transport network design. Mathematically modelling these types of changes
would almost be impossible since the level of complexity increases significantly if such uncertainties are to be taken into
account. Simulation models can be a substitute for mathematical models and allow the decision makers to play with a lot of
combinations of different parameters. Variables can still be embedded into the simulation models to enable further analysis
once the simulation runs are completed.
Accurate data collection is essential for appropriate performance analysis and is the key in decision-making. However inreality, due to a variety of reasons, accurate data are not always readily available or are very difficult to capture. Other difficulties,such as the non-existence of processes in the “to-be” scenarios also pose great challenges for performance analysis.Parameters provided by the industry or public domain data sometimes have to be used during the data collection phase. Thisgives no guarantee of the accuracy of the performance analysis due to the difference in terms of operational environment,operational efficiency, data consistency and even the accuracy of the data available. Sometimes, the data sources provided donot differentiate the types of equipment used and might be at a high aggregated level. One example is in Roso's (2007) studywhere the CO2 emission for trucks is estimated as 1 kg/km; while in the study by Liao, Tseng, and Lu (2009), CO2 emission isestimated as 155 g/tonne km. Clearly, the second data source provides a more accurate measurement since it gauges bothweight and distance.To remedy such disadvantages brought by these types of data, mathematical or simulation models can be constructed toenable further investigation of the impacts of different variables. If we take container distribution as an illustrative example,we can see that in order to transport a certain number of containers, different types of trucks can be used (e.g., B-double,Super B-double, Super B-triple, etc.). It is possible to work out the number of trips that need to be taken to completelytransport these containers and then treat the CO2 emissions as a variable in mathematical models. This will facilitate theanalysis of the impact of the variable on the overall system.Sometimes, it is not enough to only look at the mathematical model, since a lot of other factors are also changing. Againusing the container distribution example, it is important to take factors such as the volatile business environment (andtherefore not constant container flows), fast moving fuel prices (therefore no fixed cost for each trip), seasonality demand oftransport equipment (therefore a limitation to the available transport options) into consideration and assess the impacts ofthese factors on the decision making process of transport network design. Mathematically modelling these types of changeswould almost be impossible since the level of complexity increases significantly if such uncertainties are to be taken intoaccount. Simulation models can be a substitute for mathematical models and allow the decision makers to play with a lot ofcombinations of different parameters. Variables can still be embedded into the simulation models to enable further analysisonce the simulation runs are completed.
การแปล กรุณารอสักครู่..
การเก็บรวบรวมข้อมูลที่ถูกต้องเป็นสิ่งจำเป็นสำหรับการวิเคราะห์สมรรถนะที่เหมาะสมและเป็นกุญแจสำคัญในการตัดสินใจ อย่างไรก็ตามใน
ความเป็นจริง เนื่องจากความหลากหลายของเหตุผล ข้อมูลที่ถูกต้อง จะไม่เสมอพร้อมใช้งานหรือเป็นยากมากที่จะจับ ปัญหาอื่น ๆ ,
เช่นการดำรงอยู่ของกระบวนการในองค์กร " เป็น " สถานการณ์ยังก่อให้เกิดความท้าทายที่ยิ่งใหญ่สำหรับการวิเคราะห์ประสิทธิภาพ .
พารามิเตอร์โดยอุตสาหกรรมหรือข้อมูลโดเมนสาธารณะบางครั้งต้องใช้ในการเก็บ รวบรวมข้อมูล เฟส นี้
ไม่รับประกันความถูกต้องของการวิเคราะห์ประสิทธิภาพเนื่องจากความแตกต่างในแง่ของสิ่งแวดล้อมปฏิบัติการ
ประสิทธิภาพการดําเนินงาน ความสอดคล้องของข้อมูลและความถูกต้องของข้อมูล พร้อมใช้งาน บางครั้ง ข้อมูลที่ให้ทำ
ไม่แยกประเภทของอุปกรณ์ที่ใช้ และ อาจจะที่ สูง รวม ระดับ ตัวอย่างหนึ่งคือใน roso ( 2550 ) การศึกษา
ที่มีการปล่อยก๊าซ CO2 สำหรับรถบรรทุกประมาณ 1 กิโลกรัม / km ; ในขณะที่ในการศึกษาโดย Liao เช็ง และลู่ ( 2009 ) , คาร์บอนไดออกไซด์เป็นประมาณ 155 กรัม /
เป็นตันกิโลเมตร ชัดเจน , แหล่งข้อมูลที่สองมีการวัดที่ถูกต้องมากกว่า เพราะมันมีทั้งน้ำหนักและระยะทาง
.เพื่อแก้ไขข้อเสียดังกล่าวนำโดย เหล่านี้ประเภทของข้อมูล แบบจำลองทางคณิตศาสตร์หรือแบบจำลองสามารถสร้าง
เปิดการสอบสวนเพิ่มเติมผลกระทบของตัวแปรต่าง ๆ ถ้าเรารับการบรรจุเป็นตัวอย่าง
, เราสามารถดูได้ว่าในการสั่งซื้อเพื่อการขนส่งจํานวนภาชนะ ประเภทที่แตกต่างกันของรถบรรทุกสามารถใช้ ( เช่น B - Double ,
Super B - Double ,ซูเปอร์ b-triple ฯลฯ ) มันเป็นไปได้ที่จะทำงานออกจำนวนของการเดินทางที่ต้องไปขนส่งเลย
ภาชนะเหล่านี้ และรักษาการปล่อย CO2 เป็นตัวแปรในแบบจำลองทางคณิตศาสตร์ นี้จะอำนวยความสะดวก
การวิเคราะห์ผลกระทบของตัวแปรในระบบโดยรวม
บางครั้ง มันไม่เพียงพอที่จะดูแบบจำลองทางคณิตศาสตร์เท่านั้นเนื่องจากหลายปัจจัยอื่น ๆ นอกจากนี้ยังมีการเปลี่ยนแปลง การใช้ภาชนะอีก
ตัวอย่าง มันเป็นสิ่งสำคัญที่จะใช้ปัจจัย เช่น สภาพแวดล้อมทางธุรกิจที่เปลี่ยนแปลงได้ (
จึงไม่คงที่ภาชนะไหล ) , เคลื่อนที่เร็วราคาเชื้อเพลิง ( ดังนั้นจึงไม่มีต้นทุนคงที่สำหรับแต่ละเที่ยว ) , ความต้องการของ
ฤดูกาลอุปกรณ์การขนส่ง ( จึงมีข้อจำกัดที่จะตัวเลือกการขนส่งที่พร้อมใช้งาน ) ในการพิจารณาและประเมินผลกระทบของ
ปัจจัยเหล่านี้ในกระบวนการตัดสินใจของการออกแบบเครือข่ายการขนส่ง แบบจำลองทางคณิตศาสตร์เหล่านี้ประเภทของการเปลี่ยนแปลง
เกือบจะเป็นไปไม่ได้เนื่องจากระดับของความซับซ้อนที่เพิ่มขึ้นอย่างมีนัยสำคัญหากความไม่แน่นอนดังกล่าวจะถูกนำมา
บัญชีแบบจำลองสามารถแทนแบบจำลองทางคณิตศาสตร์และช่วยให้ผู้ผลิตตัดสินใจที่จะเล่นกับมาก
ชุดของพารามิเตอร์ที่แตกต่างกัน ตัวแปรที่สามารถฝังเข้าไปในแบบจำลองเพื่อให้
การวิเคราะห์ต่อไปเมื่อวิ่งจำลองเสร็จเรียบร้อย
การแปล กรุณารอสักครู่..