Referring to FIGS. 1 and 2, the nut cracking mechanism 10 is shown as part of a nut cracking system 12 that includes a vibratory feed mechanism 14, a supply hopper 16 and a collection bin 18. It is to be understood that the nut cracking mechanism 10 can be included in a nut shelling operation having different components, and the nut cracking system 12 is illustrated to assist in the description of the nut cracking mechanism which is the primary component of this invention.
The nut cracking mechanism 10 has a structural housing 20 that supports a cracking drum 22 on a shaft 24 supported by bearings 26 at the base of slots 28 in the side walls 30 of the housing 20. The housing 20 has a top 32 with an opening 34 through which nuts 36, shown in phantom, drop from a feed tray 38 of the vibratory feed mechanism 14. The vibratory feed mechanism 14 is supplied by a hopper 16 to continuously feed nuts to the cracking mechanism 10 as the cylindrical drum 22, acting as a feed roller, is rotated by a drive mechanism 40. The drive mechanism 40 is designed to vary the rotation action of the drum 22 to either continuously rotate the drum 22 or rotate the drum 22 with a primary forward and secondary reverse rotation action as desired by the operator to improve the shellings. The net forward motion insures that nuts will advance to a cracking position with shelled nuts and shells being directed to the collection bin 18. The cracking drum functions in part as a feed roller to move nuts to a wedge-shape cracking zone.