Abstract—The problem of identification and isolation of dangerous zones in offshore installations is investigated in this preliminary work. A node positioning algorithm is implemented in order to track and identify the operational movements on board the vessel. This implementation is realised with an XBee network that uses a trilateration method, making it possible to actively monitor and dynamically identify several on board zones in different operational scenarios. The crew members can be given varying degrees of access permissions in accordance with their job duties. In this way, access to dangerous areas can be easily controlled in a modular fashion. Subsequently, the user’s risk perception is considered. Traditionally, the responsibility of proper hazard identification is placed on the operators. For this reason, more attention is being given to the way that people think, feel and behave in response to risk. Risk is perceived differently by different people, and in this sense, the user’s experience and therefore ability to perceive risk can be greatly improved with the use of haptics. Haptic feedback, also known as haptics, is the use of the sense of touch in a user interface designed in such a way as to provide the user (operator) with additional information. In this work, a vibration motor is embedded in the operator’s helmet, thus providing intuitive haptic feedback. The operator perceives different types of risks according to the surrounding areas due to the integration of this technology with the XBeebased positioning algorithm and by using distinctive feedback patterns. Related experiments are carried out to validate the efficiency of the proposed technology. In particular, the presented approach demonstrates a great potential for an effective risk reduction from both an individual as well as an overall evaluation of the potential harm.
Abstract—The problem of identification and isolation of dangerous zones in offshore installations is investigated in this preliminary work. A node positioning algorithm is implemented in order to track and identify the operational movements on board the vessel. This implementation is realised with an XBee network that uses a trilateration method, making it possible to actively monitor and dynamically identify several on board zones in different operational scenarios. The crew members can be given varying degrees of access permissions in accordance with their job duties. In this way, access to dangerous areas can be easily controlled in a modular fashion. Subsequently, the user’s risk perception is considered. Traditionally, the responsibility of proper hazard identification is placed on the operators. For this reason, more attention is being given to the way that people think, feel and behave in response to risk. Risk is perceived differently by different people, and in this sense, the user’s experience and therefore ability to perceive risk can be greatly improved with the use of haptics. Haptic feedback, also known as haptics, is the use of the sense of touch in a user interface designed in such a way as to provide the user (operator) with additional information. In this work, a vibration motor is embedded in the operator’s helmet, thus providing intuitive haptic feedback. The operator perceives different types of risks according to the surrounding areas due to the integration of this technology with the XBeebased positioning algorithm and by using distinctive feedback patterns. Related experiments are carried out to validate the efficiency of the proposed technology. In particular, the presented approach demonstrates a great potential for an effective risk reduction from both an individual as well as an overall evaluation of the potential harm.
การแปล กรุณารอสักครู่..
