1. IntroductionGiant Red Shrimp (Aristaeomorpha foliacea) is among wel การแปล - 1. IntroductionGiant Red Shrimp (Aristaeomorpha foliacea) is among wel ไทย วิธีการพูด

1. IntroductionGiant Red Shrimp (Ar

1. Introduction
Giant Red Shrimp (Aristaeomorpha foliacea) is among well-known economically important fishery resource highly valued across the Mediterranean coasts. Usually after the shrimp is caught at sea and directly on-board fishing trawlers, most Mediterranean fishermen apply antioxidant agents as well as air blast freezing blocks (∼−35 °C) on either one and two kilograms of shrimp. Practically indispensable for offshore fisheries campaigns and intended to minimise other preservative additives, the traditional on-board freezing methods may well add value to on-board processing of fishery products. Besides, the pre-cooking of cold-water shrimp prior to freezing appears not satisfactorily to share among supply chain partners of Mediterranean shrimp industry. Studies’ involving characteristic attributes of seafood regardless of preservative treatments employ analytical measurements such as quantification of pH, free amino acids (FAAs), total volatile basic-nitrogen (TVB-N) and lipid oxidation ( Okpala et al., 2014, Okpala, 2014a, Okpala, 2014b, Okpala, 2015a, Okpala, 2015b and Ruiz-Capillas and Moral, 2004). Free amino acids (FAAs) remain among crucial non-protein nitrogen in crustacean responsible for flavour and taste that undergo considerable modifications at either processing or storage of seafood product. In addition, quantitative and qualitative analyses of FAAs conducted on parts of various seafood products are well documented (Ruiz-Capillas & Moral, 2004). Maintaining FAA profile of seafood products are among useful reasons why different applications of food technologies have evolved. Regardless of treatment conditions, decreases in concentrations of FAAs of fishery products can take place with storage. Significant decreases in enzymatic activity might also be associated with the dark discolouration of fishery product ( Adachi and Hirata, 2011, Ruiz-Capillas and Moral, 2001a and Ruiz-Capillas and Moral, 2004). At postharvest, useful parameters such as pH, TVB-N and TBA help to increase the understanding of biochemical differences in fishery products ( Bono, Badalucco et al., 2012, Okpala, 2015a, Okpala, 2015b, Okpala et al., 2015, Okpala and Bono, In-press, Okpala et al., 2014 and Ruiz-Capillas and Moral, 2004).

There are range of melanosis inhibitors widely reported in relevant literature such as naturally extracted compounds e.g. catechin, feluric acid, green tea extract, grape seed extract that have been applied to varied shrimp species prior to storage (Nirmal and Benjakul, 2009a, Nirmal and Benjakul, 2009b, Nirmal and Benjakul, 2010 and Nirmal and Benjakul, 2011). In addition, chemical additives such as sulphite agents that inhibit post-mortem black spots/melanosis of crustaceans are commercially available. On the other hand, the use of sulphite agents although largely understood as often deposited at fishery flesh, it could accumulate above the acceptable level limit of residue prescribed by law and hence, in recent times increasingly associated with health risks (Hardisson, Rubio, Fras, Rodriguez, & Reguera, 2002). The fact that other chemical retardants such as 4-hexylresorcinol even at low dosage remains efficacious (Montero, Martinez-Alvarez & Gomez-Guillen, 2004) does not underrate the pathological effect of sulphite derivatives (Hardisson et al., 2002). Indeed, the above mentioned chemical-related concerns draw serious global public health concerns. The use of alternative techniques that address these concerns is therefore warranted, which fishery stakeholders can easily integrate into the supply chain. The maximisation of commercial value of shrimp product requires improved packaging and processing methods that caters for the overall consumer safety of fishery products. In many parts of the globe, stakeholders of crustacean products are continually challenged to reduce the use of anti-browning additives.

Nowadays, there is increasing and strengthening interest regarding the combination of chemical-free preservative treatment methods applicable to fishery products. Indeed, there is need for a more efficient and long-term means that robustly sustains the characteristic attributes of commercially available shrimp species with cold storage. Investigations into characteristic attributes of shrimp subject to refrigerated storage in combination with different atmosphere concentrations of CO2, O2, N2 have shown promising results (Gonçalves et al., 2003, Lopez-Caballero et al., 2002 and Thepnuan et al., 2008). With storage, increases in CO2 content of packaging of fishery product might justify the enzymatic decarboxylation of free amino acids (FAA) (Bono, Badalucco et al., 2012 and Zhang et al., 2010). Combination of gas-based mixtures (N2 and N2/CO2) under freezing and vacuum treatments is understood to improve the characteristic properties of seafood (Bono, Badalucco et al., 2012 and Rosnes et al., 2003). Hence, the combination of chemical-free preservative treatments might be the valid s
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
บทนำGiant Red Shrimp (Aristaeomorpha foliacea) is among well-known economically important fishery resource highly valued across the Mediterranean coasts. Usually after the shrimp is caught at sea and directly on-board fishing trawlers, most Mediterranean fishermen apply antioxidant agents as well as air blast freezing blocks (∼−35 °C) on either one and two kilograms of shrimp. Practically indispensable for offshore fisheries campaigns and intended to minimise other preservative additives, the traditional on-board freezing methods may well add value to on-board processing of fishery products. Besides, the pre-cooking of cold-water shrimp prior to freezing appears not satisfactorily to share among supply chain partners of Mediterranean shrimp industry. Studies’ involving characteristic attributes of seafood regardless of preservative treatments employ analytical measurements such as quantification of pH, free amino acids (FAAs), total volatile basic-nitrogen (TVB-N) and lipid oxidation ( Okpala et al., 2014, Okpala, 2014a, Okpala, 2014b, Okpala, 2015a, Okpala, 2015b and Ruiz-Capillas and Moral, 2004). Free amino acids (FAAs) remain among crucial non-protein nitrogen in crustacean responsible for flavour and taste that undergo considerable modifications at either processing or storage of seafood product. In addition, quantitative and qualitative analyses of FAAs conducted on parts of various seafood products are well documented (Ruiz-Capillas & Moral, 2004). Maintaining FAA profile of seafood products are among useful reasons why different applications of food technologies have evolved. Regardless of treatment conditions, decreases in concentrations of FAAs of fishery products can take place with storage. Significant decreases in enzymatic activity might also be associated with the dark discolouration of fishery product ( Adachi and Hirata, 2011, Ruiz-Capillas and Moral, 2001a and Ruiz-Capillas and Moral, 2004). At postharvest, useful parameters such as pH, TVB-N and TBA help to increase the understanding of biochemical differences in fishery products ( Bono, Badalucco et al., 2012, Okpala, 2015a, Okpala, 2015b, Okpala et al., 2015, Okpala and Bono, In-press, Okpala et al., 2014 and Ruiz-Capillas and Moral, 2004).There are range of melanosis inhibitors widely reported in relevant literature such as naturally extracted compounds e.g. catechin, feluric acid, green tea extract, grape seed extract that have been applied to varied shrimp species prior to storage (Nirmal and Benjakul, 2009a, Nirmal and Benjakul, 2009b, Nirmal and Benjakul, 2010 and Nirmal and Benjakul, 2011). In addition, chemical additives such as sulphite agents that inhibit post-mortem black spots/melanosis of crustaceans are commercially available. On the other hand, the use of sulphite agents although largely understood as often deposited at fishery flesh, it could accumulate above the acceptable level limit of residue prescribed by law and hence, in recent times increasingly associated with health risks (Hardisson, Rubio, Fras, Rodriguez, & Reguera, 2002). The fact that other chemical retardants such as 4-hexylresorcinol even at low dosage remains efficacious (Montero, Martinez-Alvarez & Gomez-Guillen, 2004) does not underrate the pathological effect of sulphite derivatives (Hardisson et al., 2002). Indeed, the above mentioned chemical-related concerns draw serious global public health concerns. The use of alternative techniques that address these concerns is therefore warranted, which fishery stakeholders can easily integrate into the supply chain. The maximisation of commercial value of shrimp product requires improved packaging and processing methods that caters for the overall consumer safety of fishery products. In many parts of the globe, stakeholders of crustacean products are continually challenged to reduce the use of anti-browning additives.
Nowadays, there is increasing and strengthening interest regarding the combination of chemical-free preservative treatment methods applicable to fishery products. Indeed, there is need for a more efficient and long-term means that robustly sustains the characteristic attributes of commercially available shrimp species with cold storage. Investigations into characteristic attributes of shrimp subject to refrigerated storage in combination with different atmosphere concentrations of CO2, O2, N2 have shown promising results (Gonçalves et al., 2003, Lopez-Caballero et al., 2002 and Thepnuan et al., 2008). With storage, increases in CO2 content of packaging of fishery product might justify the enzymatic decarboxylation of free amino acids (FAA) (Bono, Badalucco et al., 2012 and Zhang et al., 2010). Combination of gas-based mixtures (N2 and N2/CO2) under freezing and vacuum treatments is understood to improve the characteristic properties of seafood (Bono, Badalucco et al., 2012 and Rosnes et al., 2003). Hence, the combination of chemical-free preservative treatments might be the valid s
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: