In this article, I will take you through two additional data mining methods that are slightly more complex than a regression model, but more powerful in their respective goals. Where a regression model could only give you a numerical output with specific inputs, these additional models allow you to interpret your data differently. As I said in Part 1, data mining is about applying the right model to your data. You could have the best data about your customers (whatever that even means), but if you don't apply the right models to it, it will just be garbage. Think of this another way: If you only used regression models, which produce a numerical output, how would Amazon be able to tell you "Other Customers Who Bought X Also Bought Y?" There's no numerical function that could give you this type of information. So let's delve into the two additional models you can use with your data.
In this article, I will also make repeated references to the data mining method called "nearest neighbor," though I won't actually delve into the details until Part 3. However, I included it in the comparisons and descriptions for this article to make the discussions complete.