A fish’s capacity to adapt to different levels of
environmental salinity ultimately depends on its
capacity to regulate the uptake and excretion of ions,
and to maintain its hydromineral equilibrium. The
present study shows an increase of serum osmolarity
and ion concentrations (Na+, Cl- and Ca2+) immediately
after the transference of juvenile Chinese
sturgeon from FW to BW. At 24 h after transition to
BW of 10%, serum osmolarity and ion concentrations
(Na+, Cl- and Ca2+) had begun to decrease, and
reached a new steady state after 216 h. These results
are consistent with other studies in several sturgeon
species (A. oxyrinchus, Altinok et al. 1998; A.
gu¨eldensta¨edti, Natochin et al. 1985; A. transmontanus,
McEnroe and Cech 1985; A. brevirostrum and A.
oxyrhynchus, Krayushkina 1998; A. naccarii, Cataldi
et al. 1995b, 1999; McKenzie et al. 1999; Martı´nez-
A ´
lvarez et al. 2002). These changes can be attributed
to changes in the water content in the blood, caused by
the change in environmental salinity (Plaut 1998). Like
other sturgeon, juvenile Chinese sturgeon are hyperosmotic
to fresh water and hyposmotic to sea water.
Thus, at the beginning of exposure to a hyperosmotic/
isosmotic environment, the fish would lose water
passively, and thereby undergo increases in the
concentrations of serum ions. Afterwards, the compensatory
increase in water ingestion would provide a
transitory dilution of the blood parameters. Finally,
these would return to new steady values as a result of
the rest of the osmoregulatory mechanisms (Martı´nez-
A ´
lvarez et al. 2002).
In euryhaline fish, abrupt transfer fromSWtoBWor
from BW to SW induces changes in osmotic plasma
parameters and the consequent activation of osmoregulatory
system to try to recover the original values. In
this process, two periods were described: (1) the
adaptative period, with changes in osmotic parameters,
and (2) the chronic regulatory period, where these
parameters again reach homeostasis (Holmes and
Donaldson 1969; Maetz 1974). In agreement with this,
our study shows that the acclimation of Chinese
sturgeon to BW involves two different physiological
periods, the crisis period and the stabilization period.
The crisis period, when the serum osmolarity and ion
concentrations (Na+, Cl- and Ca2+) exhibit transient
increase, occurs in the first 24 h after transference to
BW. Immediately post-transfer to BW, the critical
problem faced by sturgeon is dehydration, caused by
osmotic removal of water in the gills (Cataldi et al.
1999; McKenzie et al. 1999; Martı´nez-A´ lvarez et al.
2002). This crisis period occurs in Gulf of Mexico
sturgeon (A. oxyrinchus) at 24 h after transition to BW
(Altinok et al. 1998). The subsequent 24–216 h marks
the beginning of the stabilization period, when the
serum osmolarity and ion concentrations (Na+, Cl-
and Ca2+) start to decrease. Altinok et al. (1998) also
reported a strong increase of the osmolarity and ion
concentrations after the transference to BW in A.
oxyrinchus, peaking at 24 h, followed by a decline to
basal level.
Ion regulation maintains stable concentrations of
electrolytes in extracellular fluids. Generally, extracellular
Na+, Cl- and Ca2+ concentrations are elevated
while K+ concentrations are depressed relative to the
intracellular medium. This unequal distribution of ions
across cell membranes results in the establishment of
membrane potential. As regulatory capacity is lessened,
electrolyte concentrations are altered, disrupting
the membrane potential. As the cell is no longer
excitable, function is lost, and the cell dies (Holmes
and Donaldson 1969). Ion regulations in sturgeon are
thought to be similar to those of teleosts (Krayushkina
et al. 1995). Na+,K+-ATPase plays a critical role in
sodium and water balance in both marine and fresh
water fishes because it is involved in active sodium
transport (Borgatti et al. 1992). In the gill, Na+,K+-
ATPase drives the active ion transport processes of the
‘‘chloride’’ or ‘‘mitochondria-rich’’ cells (Marshall and
Bryson 1998). Na+,K+-ATPase similarly activates the
ion pumps in the intestine. In sea water fish, the
intestine actively absorbs Na+ and Cl- until intestine
fluid become hyposmotic to plasma, at which time
water moves passively into the plasma, thereby
maintaining overall osmotic balance (Kirsch et al.
1985; Karnaky 1998).
In our experiment, we detected a progressive
increase in gill Na+,K+-ATPase activity of fish
inhabiting brackish water, peaking at 24 h after
transference and remaining at a new steady state which
was significantly higher than the levels of fresh water
control fish (Fig. 3). The increase in plasma osmolality
reflects the challenge of the hyperosmotic medium
against the body fluids of the fish, whereupon greater
Na+,K+-ATPase activity occurs—that is, the branchial
hypo-osmoregulatory mechanisms participating
in the re-establishment of the normal values of blood
concentration were activated. Greater activity of
Na+,K+-ATPase in the gills of teleosts during acclimation
to sea water has been reported (Kirschner 1980;
Johnston and Cheverie 1985; Boeuf et al. 1985;
Fuentes et al. 1997). According to McCormick
(1995), in almost all the teleosts studied (several dozen
species), stronger salinity provoked high activity levels
of this transporter enzyme. In sturgeons, increased
activity of this enzyme has also been demonstrated
during the transition from fresh water to salt water. In
the Siberian sturgeon A. baerii, this enzyme increased
when exposed to an iso- and hyperosmotic medium
(Rodrı´guez et al. 2002, 2003). McKenzie et al. (1999),
also working with A. naccarii, found a significant
increase in branchial Na+,K+-ATPase in fish acclimated
to brackish water (23%).
When fish were transferred fromFWtoBWof 10%,
there was a marked, short-term (3 h after transfer to
brackish water) drop in the gill Na+,K+-ATPase
activity compared with that of the fish kept in fresh
water. In contrast, the spiral valve Na+,K+-ATPase
activity increased rapidly. These changes in the spiral
valve and the gill Na+,K+-ATPase activities might be
attributed to the hyperosmoregulatory mechanism
used to adapt to hyposmotic environment, i.e., active
uptake of Na+ and Cl- ions, and producing a large
amount of dilute urine (Jobling 1995). Na+-K+-
ATPase activity in the spiral valve fell rapidly at 3 h,
reaching the lowest at 24 h after transference. From
24 h to 480 h, a significant increase in the spiral valve
Na+-K+-ATPase activity was recorded in fish exposed
to 10% water salinity, and at the end of the period no
statistically significant differences were recorded
between fish kept in 0% and 10% media. This
decrease in the spiral valve Na+,K+-ATPase activity
might be the mechanism used to adapt to isosmotic/
hyperosmotic environments, i.e., reducing the ionic
Na+ and Cl- inflow. These changes of the spiral valve
Na+-K+-ATPase activity indicate that Chinese sturgeon
exposed to isoosmotic media may ingest water in
order to compensate for the osmotic water losses, as
Kirsch et al. (1984) reported for euryhaline teleost
species. This reduction in the spiral valve Na+,K+-
ATPase activity, however, also compromised intestinal
nutrient absorption, since the spiral valve is the
main site of intestinal absorption in sturgeons (Gawlicka
et al. 1995), directly affecting fish nutrition and
growth performance (Morgan and Iwana 1991).
Rodriguez et al. (2002) showed that A. baerii exposed
to isosmotic and hyperosmotic media were unable to
grow normally and had actually lost weight in
hyperosmotic media. Allen and Cech (2007) also
reported an age/body size of fish effect in hyperosmotic
adaptability. Our data do not coincide with the
results reported by Rodriguez et al. (2002). The final
body weight and SGR values in our study revealed that
fish exposed to isosmotic media grew at a faster rate
than those kept in hyposmotic media. These differences
might be due to species-specific morphophysiological
mechanisms for salinity adaptation and
tolerance, which would be directly related to the
natural history of this species. The Siberian sturgeon is
semi-anadromous, spending a significant portion of its
life in brackish water habitats (Rodriguez et al. 2002),
and Chinese sturgeon is truly anadromous, spending a
significant portion of its life in full-strength oceanic
sea water (Zhuang et al. 2002).
Na+,K+-ATPase activities in the gills and spiral
valve, SGR values and new steady states of plasma
osmolality and electrolyte concentrations of fish kept
in 273 mOsmol kg-1 all seem to indicate that
Chinese sturgeon juveniles (7 months old) were able
to regulate their hydromineral content satisfactorily
during the 20-day period. However, further research
is needed to evaluate the long-term growth of
juvenile Chinese sturgeon exposed to a plasmatic
isosmotic/hyperosmotic medium. The results of our
study indicate the existence of hyposmoregulatory
adaptive mechanisms in 7-month-old juvenile Chinese
sturgeon which enable this fish to acclimate
itself successfully to brackish water.
กำลังการผลิตของปลาเพื่อปรับให้เข้ากับระดับความแตกต่างสิ่งแวดล้อมเค็มสุดขึ้นอยู่กับความความสามารถในการควบคุมการดูดธาตุอาหารและการขับถ่ายของประจุและรักษาสมดุลของ hydromineral ที่ปัจจุบันศึกษาแสดงการเพิ่มขึ้นของ serum osmolarityและความเข้มข้นของไอออน (Na + Cl - และ Ca2 +) ทันทีหลังจากโอนของเยาวชนจีนปลาสเตอร์เจียนจาก FW ให้ BW ใน 24 ชมหลังจากการเปลี่ยนแปลงBW 10% ความเข้มข้น osmolarity และไอออนซีรั่ม(Na + Cl - และ Ca2 +) เริ่มลดลง และถึงท่อนใหม่หลังจาก 216 h ผลลัพธ์เหล่านี้สอดคล้องกับการศึกษาอื่น ๆ ในหลายปลาสเตอร์เจียนสปีชีส์ (A. oxyrinchus, Altinok และ al. ปี 1998 อ.gu¨eldensta¨edti, Natochin et al. 1985 A. transmontanusแม็กเอนโรและ Cech 1985 A. brevirostrum และอ.oxyrhynchus, Krayushkina 1998 A. naccarii, Cataldiร้อยเอ็ด al. 1995b, 1999 McKenzie et al. 1999 Martı´nez-การ´lvarez et al. 2002) สามารถบันทึกการเปลี่ยนแปลงเหล่านี้การเปลี่ยนแปลงในปริมาณน้ำในเลือด สาเหตุการเปลี่ยนแปลงในสิ่งแวดล้อมเค็ม (Plaut 1998) เช่นปลาสเตอร์เจียน ปลาสเตอร์เจียนจีนเยาวชนอื่น ๆ hyperosmoticน้ำจืดและน้ำทะเล hyposmoticดังนั้น ที่เริ่มต้นของการสัมผัสกับการ hyperosmotic /สิ่งแวดล้อม isosmotic ปลาจะสูญเสียน้ำpassively และดังนั้นจึงรับเพิ่มในความเข้มข้นของซีรั่มประจุ ภายหลัง การชดเชยกินน้ำเพิ่มขึ้นจะมีการเจือจางอนิยมพารามิเตอร์เลือด สุดท้ายเหล่านี้จะกลับไปค่ามั่นคงใหม่เป็นผลมาจากส่วนเหลือของกลไก osmoregulatory (Martı´nez-การ´lvarez et al. 2002)ในปลา euryhaline, fromSWtoBWor โอนอย่างทันทีทันใดจาก BW ให้ SW ก่อให้เกิดการเปลี่ยนแปลงในการออสโมติกพลาสม่าพารามิเตอร์และการเรียกใช้ผลลัพธ์ของ osmoregulatoryระบบพยายามกู้คืนค่าเดิม ในกระบวนการนี้ สองรอบระยะเวลาถูกอธิบาย: (1) การรอบระยะเวลา adaptative กับการเปลี่ยนแปลงในพารามิเตอร์การออสโมติกและ (2) กำกับดูแลระยะเรื้อรัง ที่นี้พารามิเตอร์อีกถึงภาวะธำรงดุล (โฮลมส์ และDonaldson 1969 Maetz 1974) ยังคง นี้เราแสดงที่ acclimation ของจีนปลาสเตอร์เจียนเพื่อ BW เกี่ยวสองต่าง ๆ สรีรวิทยารอบระยะเวลา ระยะวิกฤต และระยะเสถียรภาพระยะวิกฤตเมื่อ เซรั่ม osmolarity และไอออนความเข้มข้น (Na + Cl - และ Ca2 +) แสดงแบบฉับพลันเพิ่มขึ้น เกิดขึ้นใน 24 ชมแรกหลังจากที่โอนไปขาวดำ ทันทีหลังโอนย้ายไปที่สำคัญ BWปัญหาปลาสเตอร์เจียนจะคายน้ำ สาเหตุเอาการออสโมติกน้ำ gills (Cataldi et alปี 1999 McKenzie et al. 1999 Martı´nez A´ lvarez et al2002) ช่วงเวลาวิกฤตนี้เกิดขึ้นในอ่าวเม็กซิโกปลาสเตอร์เจียน (A. oxyrinchus) ใน 24 ชมหลังจากช่วงการเปลี่ยนภาพขาวดำ(Altinok et al. 1998) เครื่องหมาย h 24 – 216 ต่อมาจุดเริ่มต้นของรอบระยะเวลาเสถียรภาพ เมื่อการเซรั่ม osmolarity และไอออนความเข้มข้น (Na + Cl-และ Ca2 +) เริ่มลดลง Altinok et al. (1998) ยังreported a strong increase of the osmolarity and ionconcentrations after the transference to BW in A.oxyrinchus, peaking at 24 h, followed by a decline tobasal level.Ion regulation maintains stable concentrations ofelectrolytes in extracellular fluids. Generally, extracellularNa+, Cl- and Ca2+ concentrations are elevatedwhile K+ concentrations are depressed relative to theintracellular medium. This unequal distribution of ionsacross cell membranes results in the establishment ofmembrane potential. As regulatory capacity is lessened,electrolyte concentrations are altered, disruptingthe membrane potential. As the cell is no longerexcitable, function is lost, and the cell dies (Holmesand Donaldson 1969). Ion regulations in sturgeon arethought to be similar to those of teleosts (Krayushkinaet al. 1995). Na+,K+-ATPase plays a critical role insodium and water balance in both marine and freshwater fishes because it is involved in active sodiumtransport (Borgatti et al. 1992). In the gill, Na+,K+-ATPase drives the active ion transport processes of the‘‘chloride’’ or ‘‘mitochondria-rich’’ cells (Marshall andBryson 1998). Na+,K+-ATPase similarly activates theion pumps in the intestine. In sea water fish, theintestine actively absorbs Na+ and Cl- until intestinefluid become hyposmotic to plasma, at which timewater moves passively into the plasma, therebymaintaining overall osmotic balance (Kirsch et al.1985; Karnaky 1998).In our experiment, we detected a progressiveincrease in gill Na+,K+-ATPase activity of fishinhabiting brackish water, peaking at 24 h aftertransference and remaining at a new steady state whichwas significantly higher than the levels of fresh watercontrol fish (Fig. 3). The increase in plasma osmolalityreflects the challenge of the hyperosmotic mediumagainst the body fluids of the fish, whereupon greaterNa+,K+-ATPase activity occurs—that is, the branchialhypo-osmoregulatory mechanisms participatingin the re-establishment of the normal values of bloodconcentration were activated. Greater activity ofNa+,K+-ATPase in the gills of teleosts during acclimationto sea water has been reported (Kirschner 1980;Johnston and Cheverie 1985; Boeuf et al. 1985;Fuentes et al. 1997). According to McCormick(1995), in almost all the teleosts studied (several dozenspecies), stronger salinity provoked high activity levelsof this transporter enzyme. In sturgeons, increasedactivity of this enzyme has also been demonstratedduring the transition from fresh water to salt water. Inthe Siberian sturgeon A. baerii, this enzyme increasedwhen exposed to an iso- and hyperosmotic medium(Rodrı´guez et al. 2002, 2003). McKenzie et al. (1999),also working with A. naccarii, found a significantincrease in branchial Na+,K+-ATPase in fish acclimatedto brackish water (23%).When fish were transferred fromFWtoBWof 10%,there was a marked, short-term (3 h after transfer tobrackish water) drop in the gill Na+,K+-ATPaseactivity compared with that of the fish kept in freshwater. In contrast, the spiral valve Na+,K+-ATPaseactivity increased rapidly. These changes in the spiralvalve and the gill Na+,K+-ATPase activities might beattributed to the hyperosmoregulatory mechanismused to adapt to hyposmotic environment, i.e., activeuptake of Na+ and Cl- ions, and producing a largeamount of dilute urine (Jobling 1995). Na+-K+-ATPase activity in the spiral valve fell rapidly at 3 h,reaching the lowest at 24 h after transference. From24 h to 480 h, a significant increase in the spiral valveNa+-K+-ATPase activity was recorded in fish exposedto 10% water salinity, and at the end of the period nostatistically significant differences were recordedbetween fish kept in 0% and 10% media. Thisdecrease in the spiral valve Na+,K+-ATPase activitymight be the mechanism used to adapt to isosmotic/hyperosmotic environments, i.e., reducing the ionicNa+ and Cl- inflow. These changes of the spiral valveNa+-K+-ATPase activity indicate that Chinese sturgeonexposed to isoosmotic media may ingest water inorder to compensate for the osmotic water losses, asKirsch et al. (1984) reported for euryhaline teleostspecies. This reduction in the spiral valve Na+,K+-ATPase activity, however, also compromised intestinalnutrient absorption, since the spiral valve is themain site of intestinal absorption in sturgeons (Gawlickaet al. 1995), directly affecting fish nutrition andgrowth performance (Morgan and Iwana 1991).Rodriguez et al. (2002) showed that A. baerii exposedto isosmotic and hyperosmotic media were unable togrow normally and had actually lost weight inhyperosmotic media. Allen and Cech (2007) alsoreported an age/body size of fish effect in hyperosmoticadaptability. Our data do not coincide with theresults reported by Rodriguez et al. (2002). The finalbody weight and SGR values in our study revealed thatfish exposed to isosmotic media grew at a faster ratethan those kept in hyposmotic media. These differencesmight be due to species-specific morphophysiologicalmechanisms for salinity adaptation andtolerance, which would be directly related to thenatural history of this species. The Siberian sturgeon issemi-anadromous, spending a significant portion of itslife in brackish water habitats (Rodriguez et al. 2002),and Chinese sturgeon is truly anadromous, spending asignificant portion of its life in full-strength oceanicsea water (Zhuang et al. 2002).Na+,K+-ATPase activities in the gills and spiralvalve, SGR values and new steady states of plasmaosmolality and electrolyte concentrations of fish keptin 273 mOsmol kg-1 all seem to indicate thatChinese sturgeon juveniles (7 months old) were ableto regulate their hydromineral content satisfactorilyduring the 20-day period. However, further researchis needed to evaluate the long-term growth ofjuvenile Chinese sturgeon exposed to a plasmaticisosmotic/hyperosmotic medium. The results of ourstudy indicate the existence of hyposmoregulatoryadaptive mechanisms in 7-month-old juvenile Chinesesturgeon which enable this fish to acclimateitself successfully to brackish water.
การแปล กรุณารอสักครู่..
