Abstract
Monitoring land changes is an important activity in landscape planning and resource management. In this study, we analyze urban land changes in Atlanta metropolitan area through the combined use of satellite imagery, geographic information systems (GIS), and landscape metrics. The study site is a fast-growing large metropolis in the United States, which contains a mosaic of complex landscape types. Our method consisted of two major components: remote sensing-based land classification and GIS-based land change analysis. Specifically, we adopted a stratified image classification strategy combined with a GIS-based spatial reclassification procedure to map land classes from Landsat Thematic Mapper (TM) scenes acquired in two different years. Then, we analyzed the spatial variation and expansion of urban land changes across the entire metropolitan area through post classification change detection and a variety of GIS-based operations. We further examined the size, pattern, and nature of land changes using landscape metrics to examine the size, pattern, and nature of land changes. This study has demonstrated the usefulness of integrating remote sensing with GIS and landscape metrics in land change analysis that allows the characterization of spatial patterns and helps reveal the underlying processes of urban land changes. Our results indicate a transition of urbanization patterns in the study site with a limited outward expansion despite the dominant suburbanization process.
Abstract
Monitoring land changes is an important activity in landscape planning and resource management. In this study, we analyze urban land changes in Atlanta metropolitan area through the combined use of satellite imagery, geographic information systems (GIS), and landscape metrics. The study site is a fast-growing large metropolis in the United States, which contains a mosaic of complex landscape types. Our method consisted of two major components: remote sensing-based land classification and GIS-based land change analysis. Specifically, we adopted a stratified image classification strategy combined with a GIS-based spatial reclassification procedure to map land classes from Landsat Thematic Mapper (TM) scenes acquired in two different years. Then, we analyzed the spatial variation and expansion of urban land changes across the entire metropolitan area through post classification change detection and a variety of GIS-based operations. We further examined the size, pattern, and nature of land changes using landscape metrics to examine the size, pattern, and nature of land changes. This study has demonstrated the usefulness of integrating remote sensing with GIS and landscape metrics in land change analysis that allows the characterization of spatial patterns and helps reveal the underlying processes of urban land changes. Our results indicate a transition of urbanization patterns in the study site with a limited outward expansion despite the dominant suburbanization process.
การแปล กรุณารอสักครู่..