Polycyclic aromatic hydrocarbons (PAHs) are a common source of pollution in soil, mostly caused by anthropogenic means. PAHs can be derived from incomplete combustion or fossil fuel processing, and the highest concentrations in the environment are found in urban areas [1]. Several PAHs are known carcinogens [2, 3], which makes this class of pollutants not only hazardous to the environment, but also to human health. Within many, if not all, organisms, detoxification of xenobiotics like PAHs can be divided in three phases. In phase I toxic compounds are modified resulting in more reactive metabolites. The best known enzymes involved in phase I are the cytochrome P450s [4]. In the second phase the reactive metabolites are conjugated with chemical groups like glutathione or glucuronic acid [3, 5]. These conjugation reactions are performed by enzymes known as transferases. In phase III specialized transporters recognize the conjugates, and expel them out of the cell