Linear programming example 1991 UG exam
A company manufactures four products (1,2,3,4) on two machines (X and Y). The time (in minutes) to process one unit of each product on each machine is shown below:
Machine
X Y
Product 1 10 27
2 12 19
3 13 33
4 8 23
The profit per unit for each product (1,2,3,4) is £10, £12, £17 and £8 respectively. Product 1 must be produced on both machines X and Y but products 2, 3 and 4 can be produced on either machine.
The factory is very small and this means that floor space is very limited. Only one week's production is stored in 50 square metres of floor space where the floor space taken up by each product is 0.1, 0.15, 0.5 and 0.05 (square metres) for products 1, 2, 3 and 4 respectively.
Customer requirements mean that the amount of product 3 produced should be related to the amount of product 2 produced. Over a week approximately twice as many units of product 2 should be produced as product 3.
Machine X is out of action (for maintenance/because of breakdown) 5% of the time and machine Y 7% of the time.
Assuming a working week 35 hours long formulate the problem of how to manufacture these products as a linear program.
Solution
Variables
Essentially we are interested in the amount produced on each machine. Hence let:
xi = amount of product i (i=1,2,3,4) produced on machine X per week
yi = amount of product i (i=2,3,4) produced on machine Y per week
where xi >= 0 i=1,2,3,4 and yi >= 0 i=2,3,4
Note here that as product 1 must be processed on both machines X and Y we do not define y1.
Constraints
floor space
0.1x1 + 0.15(x2 + y2) + 0.5(x3 + y3) + 0.05(x4 + y4)
สอบยูจีอย่าง 1991 เขียนโปรแกรมเชิงเส้นบริษัทผลิตผลิตภัณฑ์ (1,2,3,4) ทั้งสี่บนสองเครื่อง (X และ Y) เวลา (เป็นนาที) กระบวนการหนึ่งหน่วยของผลิตภัณฑ์แต่ละรายการบนแต่ละเครื่องจะแสดงด้านล่าง: เครื่อง X Yผลิตภัณฑ์ 1 10 27 2 12 19 3 13 33 4 8 23กำไรต่อหน่วยสำหรับแต่ละผลิตภัณฑ์ (1,2,3,4) คือ 10 ปอนด์ 12 ปอนด์ ปอนด์17 และ £8 ตามลำดับ ต้องผลิตผลิตภัณฑ์ 1 บนเครื่องทั้ง X และ Y แต่ผลิตภัณฑ์ 2, 3 และ 4 สามารถผลิตทั้งเครื่องโรงงานมีขนาดเล็กมาก และซึ่งหมายความ ว่า พื้นที่จำกัดมาก เพียงหนึ่งสัปดาห์การผลิตถูกเก็บไว้ในพื้นที่ที่ถ่ายขึ้น โดยแต่ละผลิตภัณฑ์ 0.1, 0.15, 0.5 และ 0.05 (ตารางเมตร) สำหรับผลิตภัณฑ์ที่ 1, 2, 3 และ 4 ตามลำดับพื้นที่ 50 ตารางเมตรลูกค้าหมายถึง จำนวนผลิตภัณฑ์ 3 ผลิตควรจะเกี่ยวข้องกับจำนวนผลิตภัณฑ์ 2 ผลิต สัปดาห์ ประมาณสองเท่าหลายหน่วยของผลิตภัณฑ์ 2 ควรมีผลิตเป็นผลิตภัณฑ์ 3เครื่อง X คือจากการกระทำ (การบำรุงรักษา/ เนื่อง จากชำรุด) 5% ของเวลาและเครื่อง Y 7% ของเวลาสมมติว่าหนึ่งสัปดาห์ทำงาน 35 ชั่วโมงยาวกำหนดปัญหาของวิธีการผลิตผลิตภัณฑ์เหล่านี้เป็นโปรแกรมเชิงเส้นวิธีการแก้ไขปัญหาตัวแปรเป็นหลักเราสนใจยอดผลิตในแต่ละเครื่อง ด้วยเหตุนี้ ให้:xi =จำนวนสินค้าฉัน (ฉัน = 1, 2, 3, 4) ผลิตเครื่อง X ต่อสัปดาห์yi =จำนวนสินค้าฉัน (ฉัน = 2, 3, 4) ผลิตเครื่อง Y ต่อสัปดาห์ที่ซีอานซีกวน > = 0 ผม = 1, 2, 3, 4 และยี่ > = 0 ผม = 2, 3, 4Note here that as product 1 must be processed on both machines X and Y we do not define y1.Constraintsfloor space0.1x1 + 0.15(x2 + y2) + 0.5(x3 + y3) + 0.05(x4 + y4) <= 50customer requirementsx2 + y2 = 2(x3 + y3)Note here that as this is only an approximate (±5% say) constraint we might do better to express this constraint as0.95[2(x3 + y3)] <= x2 + y2 <= 1.05[2(x3 + y3)]available time10x1 + 12x2 + 13x3 + 8x4 <= 0.95(35)(60) (machine X)27x1 + 19y2 + 33y3 + 23y4 <= 0.93(35)(60) (machine Y)Objectivemaximise profit, i.e.maximise 10x1 + 12(x2 + y2) + 17(x3 + y3) + 8(x4 + y4)
การแปล กรุณารอสักครู่..