When a hub is used to network hosts, there are two problems that arise:
//
A hub repeats information received from one host to all the other hosts. To understand this, consider HostA in Figure 1-2 sending a unicast message to HostB. When the hub receives this message; it will relay the message to both HostB and HostC. Even though the message was a unicast intended only for HostB, HostC also receives it. It is up to HostC to read the message and discard it after seeing that the message was not intended for it.//
A hub creates a shared network medium where only a single host can send packets at a time. If another host attempts to send packets at the same time, a collision will occur. Then each device will need to resend their packets and hope not to have a collision again. This shared network medium is called a single collision domain. Imagine the impact of having a single collision domain where 50 or 100 hosts are connected to hubs that are interconnected and they are all trying to send data. That is just a recipe for many collisions and an inefficient network.//
The problems associated with hubs can cause severe degradation of a network. To overcome these, switches are used instead of hubs. Like hubs, switches are used to connect hosts in a network but switches break up collision domain by providing a single collision domain for every port. This means that every host (one host connects to one port on the switch) gets its own collision domain thereby eliminating the collisions in the network. With switches, each host can transmit data anytime. Switches simply “switch” the data from one port to another in the switched network. Also, unlike hubs, switches do not flood every packet out all ports. They switch a unicast packet to the port where the destination host resides. They only flood out a broadcast packet. Figure 1-3 shows a switched network.
//
Figure 1-3 A switched network
//
Remember that each host in Figure 1-3 is in its own collision domain and if HostA sends a packet to HostC, HostB will not receive it.
//
Figure 1-4 and 1-5 show two networks. See if you can figure out how many collision domains exist in them.
//
Figure 1-4 Collision Domains – 1
//
Figure 1-5 Collision Domains – 2
When a hub is used to network hosts, there are two problems that arise://A hub repeats information received from one host to all the other hosts. To understand this, consider HostA in Figure 1-2 sending a unicast message to HostB. When the hub receives this message; it will relay the message to both HostB and HostC. Even though the message was a unicast intended only for HostB, HostC also receives it. It is up to HostC to read the message and discard it after seeing that the message was not intended for it.//A hub creates a shared network medium where only a single host can send packets at a time. If another host attempts to send packets at the same time, a collision will occur. Then each device will need to resend their packets and hope not to have a collision again. This shared network medium is called a single collision domain. Imagine the impact of having a single collision domain where 50 or 100 hosts are connected to hubs that are interconnected and they are all trying to send data. That is just a recipe for many collisions and an inefficient network.//The problems associated with hubs can cause severe degradation of a network. To overcome these, switches are used instead of hubs. Like hubs, switches are used to connect hosts in a network but switches break up collision domain by providing a single collision domain for every port. This means that every host (one host connects to one port on the switch) gets its own collision domain thereby eliminating the collisions in the network. With switches, each host can transmit data anytime. Switches simply “switch” the data from one port to another in the switched network. Also, unlike hubs, switches do not flood every packet out all ports. They switch a unicast packet to the port where the destination host resides. They only flood out a broadcast packet. Figure 1-3 shows a switched network.//Figure 1-3 A switched network//Remember that each host in Figure 1-3 is in its own collision domain and if HostA sends a packet to HostC, HostB will not receive it.//Figure 1-4 and 1-5 show two networks. See if you can figure out how many collision domains exist in them.//Figure 1-4 Collision Domains – 1//Figure 1-5 Collision Domains – 2
การแปล กรุณารอสักครู่..
