A proof that P = NP could have stunning practical consequences, if the proof leads to efficient methods for solving some of the important problems in NP. It is also possible that a proof would not lead directly to efficient methods, perhaps if the proof is non-constructive, or the size of the bounding polynomial is too big to be efficient in practice. The consequences, both positive and negative, arise since various NP-complete problems are fundamental in many fields.
Cryptography, for example, relies on certain problems being difficult. A constructive and efficient solution[Note 1] to an NP-complete problem such as 3-SAT would break most existing cryptosystems including:
These would need to be modified or replaced by information-theoretically secure solutions not inherently based on P-NP equivalence.
On the other hand, there are enormous positive consequences that would follow from rendering tractable many currently mathematically intractable problems. For instance, many problems in operations research are NP-complete, such as some types of integer programming and the travelling salesman problem. Efficient solutions to these problems would have enormous implications for logistics. Many other important problems, such as some problems in protein structure prediction, are also NP-complete;[22] if these problems were efficiently solvable it could spur considerable advances in biology.
A proof that P = NP could have stunning practical consequences, if the proof leads to efficient methods for solving some of the important problems in NP. It is also possible that a proof would not lead directly to efficient methods, perhaps if the proof is non-constructive, or the size of the bounding polynomial is too big to be efficient in practice. The consequences, both positive and negative, arise since various NP-complete problems are fundamental in many fields.
Cryptography, for example, relies on certain problems being difficult. A constructive and efficient solution[Note 1] to an NP-complete problem such as 3-SAT would break most existing cryptosystems including:
These would need to be modified or replaced by information-theoretically secure solutions not inherently based on P-NP equivalence.
On the other hand, there are enormous positive consequences that would follow from rendering tractable many currently mathematically intractable problems. For instance, many problems in operations research are NP-complete, such as some types of integer programming and the travelling salesman problem. Efficient solutions to these problems would have enormous implications for logistics. Many other important problems, such as some problems in protein structure prediction, are also NP-complete;[22] if these problems were efficiently solvable it could spur considerable advances in biology.
การแปล กรุณารอสักครู่..