SHIFTING CALIFORNIA FORESTS REVEAL COMPLEX EFFECTS OF DROUGHT
January 28, 2015Conservation This Week1 Comment
When it comes to understanding human impacts on forests, the first thing that springs to mind is probably logging. And while logging does leave a heavy footprint, it’s not the only anthropogenic activity that affects forest health. In California, ninety years worth of data shows that climate change is also stressing the state’s forests – and not in the ways you might think. Most of the state’s forests actually have greater tree density now than they did in the 1920s and 1930s. So what’s going on?
It turns out that forest ecology is, unsurprisingly, simply more complicated than whether there are fewer or more trees. Previous research has shown that forests in the Sierra Nevada Mountains have shifted in composition over the last century. As larger trees (>60cm diameter) have died off, they’ve been replaced with more, smaller ones.
McIntyre and his team compared forest surveys made in the 1920s and 1930s by UC Berkeley researcher Albert Wieslander to those made between 2001 and 2010 by the US Forest Service. They discovered that while overall forest biomass declined over that period, tree density increased by thirty percent. That trend had already been noted for the Sierra Nevadas, but McIntyre’s group found it to be true also of the Sierra Foothills, the coastal ranges of Northern, Central, and Southern California, and the peninsular ranges south of the Los Angeles area.
The researchers then compared the changes in forest composition with estimates of changes in “climatic water deficit,” or CWD. CWD is an estimate of water demand relative to water availability. Higher values indicate lower availability, while lower values suggest there’s enough water to go around. Higher CWD is driven by phenomena like increased temperatures, earlier snowmelt, and decreased precipitation – all representative of the effects of global climate change on California’s long-term weather patterns.
They discovered that declines in large tree density correlated with increases in CWD, while no correlation was found for small trees. That suggests that large trees suffer disproportionately during droughts, and that small trees have exploited the space made available by the disappearance of their larger counterparts. Logging surely plays its role, as does pollution, in the more urbanized parts of the state, but no single variable explains the similar trend across the state as elegantly and simply as drought.