is much higher than those of the H-terminated silicon surfaceand passi การแปล - is much higher than those of the H-terminated silicon surfaceand passi ไทย วิธีการพูด

is much higher than those of the H-

is much higher than those of the H-terminated silicon surface
and passivated by a native oxidation layer, 27.88 s and 24.70 s
respectively. It is worth mentioning that the samples without passivation
(H-terminated) and that passivated by native oxidation
also perform well, since the minority carrier lifetimes of such samples
are higher than that (21.10 s) treated by the optimal wetting
oxidation technology [23].
The minority carrier lifetime is determined by the surface and
bulk recombination [28], as given in Eq. (1) bellow;
1
m
= 1
b
+
2S
d (1)
where m and b is the measured lifetime and the bulk lifetime
respectively, S is the surface recombination velocity, and d is the
wafer thickness.
To characterize the surface passivation effect, eliminating the
influence from thickness, we have also calculated the S values from
Eq. (1). In our calculations, b = 19 ms is used [28], and the wafer
thicknesses are all assumed to be 500 m. The S values obtained
are 1051, 895 and 603 cm/s, for the native oxidized, H-terminated,
andi a-Si passivated silicon surfaces, respectively. These results also
demonstrate that the i a-Si passivation method is the best, which
is consistent with the device performances as given below.
3.3. Device performance
The current-voltage characteristics of the planar ultrathin cSi/PEDOT:PSS
solar cells using above passivation technologies are
shown in Fig. 4(a). Apparently, the device using the i a-Si passivation
method possesses the highest short current density Jsc and
open voltage Voc, thus the best performance (PCE = 5.68%).
The average values of Jsc and Voc including standard deviation
from several solar cell devices are listed in Table 1. Firstly, it can
be seen that the Voc of devices passivated by i a-Si is 6.6% and 8.4%
higher than those without passivation and passivated by native oxidation,
respectively. This improvement can be mainly attributed to
the atomic scale rough surface of the deposited i a-Si layer, which
is better for the formation of high quality hetero junction between
the c-Si and the PEDOT:PSS layer. Then, the Jsc of solar cells passivated
by the i a-si is also enhanced by 4.0% and 8.0%, compared
Table 1
Photovoltaic characteristics of Si/PEDOT:PSS solar cells with different passivation.
Passivation Voc (mV) Jsc (mA/cm2) FF (%)  (%)
i a-Si 438 ± 7 19.50 ± 0.22 62.12 ± 2.28 5.30 ± 0.21
H-terminated 411 ± 7 18.75 ± 0.17 64.97 ± 2.88 5.01 ± 0.22
Native oxide 404 ± 35 18.06 ± 0.44 64.35 ± 4.15 4.71 ± 0.59
with those without passivation and passivated by native oxidation
layer. The increased Jsc can be directly related to better passivation
of the i a-Si layer.
The passivation effect of different methods can be reflected by
the R-M/T of the photovoltaic devices. The limited current density
is calculated by integrating the incident solar photon flux density
from AM1.5 spectrum in the waveband 300–1100 nm, under
the assumption that the internal quantum efficiency is 100%. The
obtained results for photovoltaic devices of different thickness are
plotted in Fig. 4(b). For the device of 18 m thickness, we have also
calculated the more practical limited current density that excludes
optical losses, which means the part of light being reflected (supporting
information). The obtained current density is 23.5 mA/cm2.
Referring to this value, the R-M/T for devices passivated using the
i a-Si, HF treatment and native oxidation methods are 83.0%, 79.8%
and 76.9%, respectively. The higher value for the device passivated
by an i a-Si layer denotes that this method is an ideal passivation
method for c-Si/PEDOT:PSS solar cells. Besides, all the R-M/T values
for the devices in this study are dramatically higher than those
for the devices with complex light-trapping designs, 51.0% [13].
This demonstrates the remarkable superiority of planar structural
ultrathin solar cells.
4. Conc
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
is much higher than those of the H-terminated silicon surfaceand passivated by a native oxidation layer, 27.88 s and 24.70 srespectively. It is worth mentioning that the samples without passivation(H-terminated) and that passivated by native oxidationalso perform well, since the minority carrier lifetimes of such samplesare higher than that (21.10 s) treated by the optimal wettingoxidation technology [23].The minority carrier lifetime is determined by the surface andbulk recombination [28], as given in Eq. (1) bellow;1m= 1b+2Sd (1)where m and b is the measured lifetime and the bulk lifetimerespectively, S is the surface recombination velocity, and d is thewafer thickness.To characterize the surface passivation effect, eliminating theinfluence from thickness, we have also calculated the S values fromEq. (1). In our calculations, b = 19 ms is used [28], and the waferthicknesses are all assumed to be 500 m. The S values obtainedare 1051, 895 and 603 cm/s, for the native oxidized, H-terminated,andi a-Si passivated silicon surfaces, respectively. These results alsodemonstrate that the i a-Si passivation method is the best, whichis consistent with the device performances as given below.3.3. Device performanceThe current-voltage characteristics of the planar ultrathin cSi/PEDOT:PSSsolar cells using above passivation technologies areshown in Fig. 4(a). Apparently, the device using the i a-Si passivationmethod possesses the highest short current density Jsc andopen voltage Voc, thus the best performance (PCE = 5.68%).The average values of Jsc and Voc including standard deviationfrom several solar cell devices are listed in Table 1. Firstly, it canbe seen that the Voc of devices passivated by i a-Si is 6.6% and 8.4%higher than those without passivation and passivated by native oxidation,respectively. This improvement can be mainly attributed tothe atomic scale rough surface of the deposited i a-Si layer, whichis better for the formation of high quality hetero junction betweenthe c-Si and the PEDOT:PSS layer. Then, the Jsc of solar cells passivatedby the i a-si is also enhanced by 4.0% and 8.0%, comparedTable 1Photovoltaic characteristics of Si/PEDOT:PSS solar cells with different passivation.Passivation Voc (mV) Jsc (mA/cm2) FF (%)  (%)i a-Si 438 ± 7 19.50 ± 0.22 62.12 ± 2.28 5.30 ± 0.21H-terminated 411 ± 7 18.75 ± 0.17 64.97 ± 2.88 5.01 ± 0.22Native oxide 404 ± 35 18.06 ± 0.44 64.35 ± 4.15 4.71 ± 0.59with those without passivation and passivated by native oxidationlayer. The increased Jsc can be directly related to better passivationof the i a-Si layer.The passivation effect of different methods can be reflected bythe R-M/T of the photovoltaic devices. The limited current densityis calculated by integrating the incident solar photon flux densityfrom AM1.5 spectrum in the waveband 300–1100 nm, underthe assumption that the internal quantum efficiency is 100%. The
obtained results for photovoltaic devices of different thickness are
plotted in Fig. 4(b). For the device of 18 m thickness, we have also
calculated the more practical limited current density that excludes
optical losses, which means the part of light being reflected (supporting
information). The obtained current density is 23.5 mA/cm2.
Referring to this value, the R-M/T for devices passivated using the
i a-Si, HF treatment and native oxidation methods are 83.0%, 79.8%
and 76.9%, respectively. The higher value for the device passivated
by an i a-Si layer denotes that this method is an ideal passivation
method for c-Si/PEDOT:PSS solar cells. Besides, all the R-M/T values
for the devices in this study are dramatically higher than those
for the devices with complex light-trapping designs, 51.0% [13].
This demonstrates the remarkable superiority of planar structural
ultrathin solar cells.
4. Conc
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
จะสูงกว่าพื้นผิวซิลิคอน H-ยกเลิก
และ passivated ด้วยชั้นออกซิเดชันพื้นเมือง 27.88 และ 24.70 วินาที
ตามลำดับ เป็นมูลค่าการกล่าวขวัญว่ากลุ่มตัวอย่างโดยไม่ต้องคราบฝังแน่น
(H-ยกเลิก) และ passivated ออกซิเดชันพื้นเมือง
ยังทำงานได้ดีตั้งแต่อายุการใช้งานของผู้ให้บริการรายย่อยของกลุ่มตัวอย่างดังกล่าว
จะสูงกว่านั้น (21.10 s) ได้รับการรักษาโดยการเปียกที่ดีที่สุด
เทคโนโลยีออกซิเดชัน [23] .
อายุการใช้งานของผู้ให้บริการชนกลุ่มน้อยที่ถูกกำหนดโดยพื้นผิวและ
การรวมตัวกันเป็นกลุ่ม [28] ในขณะที่ได้รับในสมการ (1) การร้อง;
1
M
= 1
B
+
2S
d (1)
ที่ม. และ B คืออายุการใช้งานการวัดและอายุการใช้งานเป็นกลุ่ม
ตามลำดับ S คือความเร็ว recombination พื้นผิวและ D คือ
ความหนาของแผ่นเวเฟอร์.
ลักษณะผลกระทบพื้นผิวคราบฝังแน่น ขจัด
อิทธิพลจากความหนาของเรายังได้คำนวณค่า S จาก
สมการ (1) ในการคำนวณของเรา B = 19 MS จะใช้ [28] และเวเฟอร์
หนาจะถือว่าทั้งหมดจะเป็น 500 เมตร ค่า S ได้
เป็น 1051 895 และ 603 ซม. / s สำหรับพื้นเมืองออกซิไดซ์, H-ยกเลิก
Andi ที่ศรีพื้นผิว Passivated ซิลิกอนตามลำดับ ผลการเหล่านี้ยัง
แสดงให้เห็นว่าวิธีการทู่ฉันศรีเป็นที่ดีที่สุดซึ่ง
มีความสอดคล้องกับการแสดงอุปกรณ์ที่ได้รับด้านล่าง.
3.3 ประสิทธิภาพของอุปกรณ์
ลักษณะปัจจุบันแรงดันของระนาบบางเฉียบ CSI / PEDOT: PSS
เซลล์แสงอาทิตย์ที่ใช้เทคโนโลยีดังกล่าวข้างต้นทู่จะ
แสดงในรูป 4 (ก) เห็นได้ชัดว่าอุปกรณ์ที่ใช้ฟิล์มฉันศรี
วิธีการครอบครองความหนาแน่นสูงสุดสั้นปัจจุบัน Jsc และ
เปิดแรงดัน Voc จึงประสิทธิภาพที่ดีที่สุด (PCE = 5.68%).
โดยค่าเฉลี่ยของ JSC และ Voc รวมทั้งค่าเบี่ยงเบนมาตรฐาน
จากอุปกรณ์เซลล์แสงอาทิตย์หลาย มีการระบุไว้ในตารางที่ 1 ประการแรกก็สามารถ
มองเห็นได้ว่า Voc ของอุปกรณ์ passivated โดย I A-Si คือ 6.6% และ 8.4%
สูงกว่าผู้ที่ไม่มีทู่และ passivated ออกซิเดชันพื้นเมือง
ตามลำดับ การปรับปรุงนี้สามารถนำมาประกอบส่วนใหญ่จะ
ขนาดอะตอมพื้นผิวขรุขระของฝากผมที่ศรีชั้นซึ่ง
จะดีกว่าสำหรับการก่อตัวของทางแยกแตกต่างที่มีคุณภาพสูงระหว่าง
C-Si และ PEDOT นี้: PSS ชั้น จากนั้น Jsc ของเซลล์แสงอาทิตย์ passivated
โดย I A-si จะเพิ่มขึ้นโดย 4.0% และ 8.0% เมื่อเทียบ
ตารางที่ 1
ลักษณะไฟฟ้าโซลาร์เซลล์ของศรี / PEDOT:. PSS เซลล์แสงอาทิตย์ที่มีฟิล์มที่แตกต่างกัน
Passivation Voc (mV) Jsc (MA / cm2) FF (%)? (%)
ฉันศรี 438 ± 7 19.50 ± 0.22 62.12 ± 2.28 5.30 ± 0.21
H-ยกเลิก 411 ± 7 18.75 ± 0.17 64.97 ± 2.88 5.01 ± 0.22
พื้นเมืองออกไซด์ 404 ± 35 18.06 ± 0.44 64.35 ± 4.15 4.71 ± 0.59
กับบรรดา โดยไม่ต้องทู่และ passivated ออกซิเดชันพื้นเมือง
ชั้น เพิ่มขึ้น Jsc สามารถที่เกี่ยวข้องโดยตรงกับฟิล์มที่ดีกว่า
ของฉันที่ศรีชั้น.
ผลทู่ของวิธีการที่แตกต่างกันสามารถสะท้อนจาก
RM / การ T ของอุปกรณ์ไฟฟ้าโซลาร์เซลล์ จำกัด ความหนาแน่นกระแสไฟฟ้า
จะถูกคำนวณโดยการบูรณาการเหตุการณ์ที่เกิดขึ้นมีความหนาแน่นฟลักซ์โฟตอนพลังงานแสงอาทิตย์
จากสเปกตรัม AM1.5 ใน waveband 300-1100 นาโนเมตรภายใต้
สมมติฐานที่ว่าประสิทธิภาพควอนตัมภายในเป็น 100%
ผลที่ได้รับสำหรับอุปกรณ์ไฟฟ้าโซลาร์เซลล์ที่มีความหนาแตกต่างกันมี
พล็อตในรูป 4 (ข) สำหรับอุปกรณ์ของ 18 เมตรความหนาเรายังได้
คำนวณความหนาแน่นกระแสการปฏิบัติมากขึ้น จำกัด ที่ไม่รวม
การสูญเสียแสงซึ่งหมายความว่าส่วนหนึ่งของแสงสะท้อน (สนับสนุน
ข้อมูล) ที่ได้รับความหนาแน่นปัจจุบันคือ 23.5 mA / cm2.
หมายถึงค่านี้, RM / การ T สำหรับอุปกรณ์ passivated ใช้
ฉันศรีรักษา HF และวิธีการออกซิเดชั่พื้นเมือง 83.0%, 79.8%
และ 76.9% ตามลำดับ มูลค่าที่สูงขึ้นสำหรับอุปกรณ์ passivated
จากชั้นผมที่ศรีหมายถึงว่าวิธีนี้เป็นฟิล์มที่เหมาะสำหรับ
วิธีการสำหรับ C-Si / PEDOT: PSS เซลล์แสงอาทิตย์ นอกจากนี้ทุก RM / การค่า T
สำหรับอุปกรณ์ในการศึกษาครั้งนี้เป็นอย่างมากสูงกว่า
สำหรับอุปกรณ์ที่มีการออกแบบแสงดักซับซ้อน 51.0% [13].
นี้แสดงให้เห็นถึงความเหนือกว่าที่โดดเด่นของระนาบโครงสร้าง
เซลล์แสงอาทิตย์บางเฉียบ.
4 เข้มข้น
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
จะสูงกว่าของพื้นผิว h-terminated ซิลิคอนและ ประกอบด้วยชั้นแบบพื้นเมือง , 8.93% และ 24.70 sตามลำดับ เป็นมูลค่าการกล่าวขวัญว่ากลุ่มตัวอย่างไม่มีรุ้ง( h-terminated ) และแข็งแรงโดยพื้นเมืองออกซิเดชันยังแสดงได้ดี เนื่องจากพาหะส่วนน้อย lifetimes ของตัวอย่าง เช่นจะสูงกว่า ( เป็นส่วนใหญ่ ) การรักษาโดยน้ำที่เหมาะสมออกซิเดชันเทคโนโลยี [ 23 ]พาหะส่วนน้อย ชีวิตถูกกำหนดด้วยพื้นผิวการรวมตัวเป็นกลุ่ม [ 28 ] ตามที่ระบุในอีคิว ( 1 ) ตะโกน ;1เมตร= 1บี+2SD ( 1 )ที่ M และ B คือ วัดอายุการใช้งานและอายุการใช้งานเป็นกลุ่มตามลำดับ ของพื้นผิวการความเร็วและ d คือความหนาของเวเฟอร์ลักษณะผิวรุ้ง ผลไม่อิทธิพลของความหนา นอกจากนี้เรายังได้คำนวณค่า S จากอีคิว ( 1 ) ในการคำนวณของเรา , B = 19 นางสาวใช้ [ 28 ] และเวเฟอร์ความหนาทั้งหมดถือว่าเป็น S ได้ประมาณ 500 เมตรจะขอแล้ว 603 , cm / s สำหรับพื้นเมือง h-terminated ออกซิไดซ์ ,แอนดี้อะมอร์ฟัสซิลิคอน ซิลิคอน ผิวแข็งแรง ตามลำดับ ผลลัพธ์เหล่านี้ยังแสดงให้เห็นว่า ผมอะมอร์ฟัสซิลิคอนแพซซิวิธีที่ดีที่สุด ซึ่งสอดคล้องกับอุปกรณ์การแสดงที่ระบุด้านล่าง3.3 . ประสิทธิภาพของอุปกรณ์ปัจจุบันลักษณะแรงดันของระนาบ ultrathin CSI / pedot : แฮ่เซลล์แสงอาทิตย์ที่ใช้เทคโนโลยีข้างต้นเป็นรุ้งแสดงในรูปที่ 4 ( ) เห็นได้ชัดว่า อุปกรณ์ที่ใช้ชั้นอะมอร์ฟัสซิลิคอนรุ้งวิธีมีที่สุดสั้นที่มีความหนาแน่นและสำหรับแรงดันเปิด ดังนั้นการปฏิบัติที่ดีที่สุด ( PCE = 5.68 ล้านบาทค่า เฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของ JSC VOC ได้แก่จากอุปกรณ์เซลล์แสงอาทิตย์หลายที่ระบุไว้ในตารางที่ 1 ประการแรก มันสามารถจะเห็นได้ว่าสารระเหยของอุปกรณ์ประกอบด้วยชั้นอะมอร์ฟัสซิลิคอนเป็น 6.6% และ 8.4 %สูงกว่าและปราศจาการประกอบโดยพื้นเมืองออกซิเดชันตามลำดับ การปรับปรุงนี้สามารถเป็นส่วนใหญ่ ประกอบกับขนาดอะตอม พื้นผิวที่ขรุขระของที่ฝากผมชั้นอะมอร์ฟัสซิลิคอน ซึ่งดีกว่าสำหรับการสร้างที่มีคุณภาพสูงอื่นระหว่างชุมทางการ c-si และ pedot : ชั้นแฮ่ . งั้น , JSC ของเซลล์แสงอาทิตย์แข็งแรง .โดยผมอะมอร์ฟัสซิลิคอนยังเพิ่มขึ้นร้อยละ 4.0 และ 8.0 % , เปรียบเทียบตารางที่ 1ลักษณะของแผงเซลล์แสงอาทิตย์ของจังหวัด / pedot : แฮ่เซลล์แสงอาทิตย์ที่มีรุ้ง .าร VOC ( MV ) JSC ( MA / cm2 ) FF ( % ) ( % )ผมอะมอร์ฟัสซิลิคอน 438 ± 7 19.50 ± 0.22 62.12 ± 2.28 5.30 ± 0.21h-terminated 411 ± 7 18.75 ± 0.17 ค่า± 2.88 5.01 ± 0.22พื้นเมืองออกไซด์ 404 ± 35 52 ± 0.44 64.35 ± 4.15 4.71 ± 0.59กับคนที่ไม่มีารประกอบโดยพื้นเมืองและออกซิเดชันชั้น เพิ่ม JSC จะเกี่ยวข้องโดยตรงดีกว่า รุ้งของชั้นอะมอร์ฟัสซิลิคอนรูปภาพารผลของวิธีการที่แตกต่างกันที่สามารถสะท้อนให้เห็นโดยการ r-m / T ของอุปกรณ์เซลล์แสงอาทิตย์ ความหนาแน่นกระแสไฟฟ้า จำกัดคำนวณโดยรวมเหตุการณ์ความหนาแน่นฟลักซ์แสงพลังงานแสงอาทิตย์จาก am1.5 สเปกตรัมใน waveband 300 – 1 , 100 nm , ภายใต้สมมติว่าประสิทธิภาพควอนตัมภายใน 100 % ที่ผลที่ได้รับสำหรับแผงเซลล์แสงอาทิตย์เป็นอุปกรณ์ที่มีความหนาวางแผนในรูป 4 ( b ) สำหรับอุปกรณ์ 18 เมตร ความหนา เราก็คํานวณในทางปฏิบัติมากขึ้นความหนาแน่นกระแสที่ไม่รวมจำกัดการสูญเสียแสง ซึ่งหมายถึงส่วนหนึ่งของแสงที่ถูกสะท้อน ( สนับสนุนข้อมูล ) ค่าความหนาแน่นกระแสเป็น 23.5 มา / cm2หมายถึงคุณค่านี้ r-m / T อุปกรณ์ประกอบโดยใช้ผมอะมอร์ฟัสซิลิคอน , HF วิธีการรักษาและออกซิเดชันพื้นเมือง 83.0 42 kDa % %และ 76.9 ตามลำดับ สูงกว่าค่าอุปกรณ์ที่แข็งแรง .โดยผมไม่แน่นอน ชั้นหมายถึงว่า วิธีนี้เหมาะเป็นรุ้งวิธีการ c-si / pedot : แฮ่ เซลล์แสงอาทิตย์ นอกจากนี้ ทุก r-m T / ค่าสำหรับอุปกรณ์ในการศึกษาอย่างมากสูงกว่าสำหรับอุปกรณ์ที่มีความซับซ้อนการออกแบบแสงดัก , 51.0 % [ 13 ]นี้แสดงให้เห็นถึงความเหนือกว่าที่น่าทึ่งของโครงสร้างระนาบเซลล์แสงอาทิตย์ ultrathin .4 . ค๊อง
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: