After that, you are ready to test the PCB. Connect a transformer to the X1 terminal (from 24V to 30V AC) and a multimeter to the X2 one. If you don’t apply any load, you don’t need to install a heat sink because the L296 will take some minutes before getting too hot. Now, if turning the potentiometer R6 the voltage output changes from 0V to 30V and goes to 0V by turning anti-clockwise the potentiometer R3, it will mean that your PCB is working properly.
Before testing it with a load, you must install a heat sink on the L296 and the diode D1. Insulate them electrically by a mica insulator as explained here. Notice that the L296’s tab is connected to the pin 8, that is the ground. So, you might insulate only the diode: in that way the heat sink will be connected directly to GND.
After that, you are ready to test the PCB. Connect a transformer to the X1 terminal (from 24V to 30V AC) and a multimeter to the X2 one. If you don’t apply any load, you don’t need to install a heat sink because the L296 will take some minutes before getting too hot. Now, if turning the potentiometer R6 the voltage output changes from 0V to 30V and goes to 0V by turning anti-clockwise the potentiometer R3, it will mean that your PCB is working properly.Before testing it with a load, you must install a heat sink on the L296 and the diode D1. Insulate them electrically by a mica insulator as explained here. Notice that the L296’s tab is connected to the pin 8, that is the ground. So, you might insulate only the diode: in that way the heat sink will be connected directly to GND.
การแปล กรุณารอสักครู่..
