The objective was to determine the effect of plasma progesterone concentration and the duration of proestrus during growth of the ovulatory follicle on fertility in beef cattle. Heifers (N = 61) and postpartum cows (N = 79) were assigned randomly to four groups in a two-by-two design involving luteal-phase versus subluteal-phase plasma progesterone concentrations and normal versus short proestrus. To synchronize follicular wave emergence, estradiol-17β was given im during the midluteal phase (Day 0) and concurrently, a once-used controlled intravaginal progesterone-releasing device was placed intravaginally. In the subluteal-phase progesterone groups, a luteolytic dose of PGF2α was given on Day 0 and again 12 hours later. In the luteal-phase progesterone groups, PGF2α was not given (so as to retain a functional CL). The controlled intravaginal progesterone-releasing device was removed and PGF2α was given on Days 7 or 8 in the normal- and short-proestrus groups, respectively. Cattle were given lutropin im 12 or 36 hours later in the short- and normal-proestrus groups, respectively, with AI at 12 hours after lutropin treatment. Transrectal ultrasonography was used to monitor ovarian response during treatments and to diagnose pregnancy 60 days after AI. Cattle (heifers and cows combined) in the subluteal-phase progesterone groups and normal proestrus groups had a larger follicle at the time of AI, and a larger CL that secreted more progesterone 9 days after AI than cattle with luteal-phase progesterone concentrations or those with short proestrus (P < 0.03). There was a higher incidence of ovulation (P < 0.01) the day after AI in heifers (55/61; 90%) than in cows (44/79; 56%). Pregnancy rates ranged from 11% to 54%, and were higher in cattle (heifers and cows combined) in the subluteal-phase progesterone groups and normal proestrus groups than in the luteal-phase progesterone or short proestrus groups, respectively, (P < 0.02). In conclusion, a short proestrous interval reduced pregnancy rate after fixed-time AI in beef cattle. A low progesterone environment during growth of the ovulatory follicle increased the preovulatory follicle size and subsequent CL size and function, and compensated for the effect of a short proestrus on pregnancy rates.