Methods
Synthesized amorphous bioglass 45S5 specimens as well as samples which were crystallized at 1000 °C were stored in simulated body fluid for 1, 7, and 14 days. The respective apatite formation was gravimetrically determined and characterized by SEM and XRD analysis. Moreover, the degradation behavior was studied after storage in distilled water.
Results
The weight of the crystallized samples decreased 6.3% less than that of the amorphous samples. Calcium silica and calcium carbonate layers were found on amorphous bioglass after 7 and 14 days. However, apatite formation was observed only on the crystallized 45S5 samples after storage.
Significance
We conclude that the chemical resistance can be improved and, in parallel, a pronounced apatite formation on the surface of 45S5 can be obtained by controlled crystallization of the material for the particular test setup. Therefore, crystallized bioactive glasses should be considered to be promising coating material for dental implants.