Dissolution rate was studied by using USP type-II apparatus (USP XXIII Dissolution Test Apparatus at 50 rpm) using 900ml of 0.5 % of SLS solution as dissolution medium. Temperature of the dissolution medium was maintained at 37±0.5°C, aliquot of dissolution medium was withdrawn at every 1 min. interval and filtered. The absorbance of filtered solution was measured by UV spectrophotometric method at 342nm and concentration of the drug was determined from standard calibration curve. The dissolution of Montelukast sodium from the tablets is shown in (Fig 3-4) and (Table 4) shows the t50% andt90% of the release profiles. These values changed with change of formulations. The preparation of tablets by co-processed superdintegrants method shows the t50% and t90%between 0.94 min to 1.82 min and 3.61 min to 5.83 min respectively. Among all formulations CP3 showed 99.79% drug release within 4 min. Montelukast sodium tablets containing coprocessed superdisintegrants exhibit quick disintegration and improved drug dissolution. It can be concluded from the present work that co-processed superdisintegrants of CP+CCS are superior to CP+SSG co-processed superdisintegrants used in Carbamazepine fast dissolving tablets.
The promising formulations were subjected to short term stability study by storing the formulations at 25°C/65% and 40oC/75% RH up to three month. The optimized formulations CP2 and CP3 were selected. After three month the tablets were again analyzed for the hardness, friability, drug content uniformity and disintegration time. The increase in the disintegration time was observed in case of tablets prepared with direct compression method No change was observed in the hardness, friability and disintegration time of tablets prepared by co-processed technique. No significant change was observed in the of all formulation. The results were shown in Table 5.
CONCLUSION:
Montelukast Sodium is a leukotriene receptor antagonist (LTRA) used for the treatment of asthma and to relieve symptoms of seasonal allergies. In the present work, fast dissolving tablets of Montelukast sodium (MS) were prepared using novel co-processed superdisintegrants consisting of CP along with CCS, and CP along with SSG in the different ratios (1:1, 1:2 and 1:3). Montelukast sodium tablets containing co-processed superdisintegrants exhibit quick disintegration and improved drug dissolution. It can be concluded from the present work that co-processed superdisintegrants of CP and CCS are superior to physical mixtures of CP and CCS used in Montelukast sodium fast dissolving tablets.
ACKNOWLEDGEMENTS:
The authors are thankful Redefining Healthcare, Unimark Remedies Limited, Vapi, Gujarat, India for providing Montelukast Soduim as a Gift sample. The authors are also thankful to Sri. Juvadi Sagar Rao Garu, Chairman and Sri. K. Venkat Rao Garu, Director, Jyothishmathi Institute of Pharmaceutical Science, Karimnagar, provide the facilities to carrying out this research work.