3.2.3. Principal components of nonlinear discrimination Fig. 6 shows t การแปล - 3.2.3. Principal components of nonlinear discrimination Fig. 6 shows t ไทย วิธีการพูด

3.2.3. Principal components of nonl


3.2.3. Principal components of nonlinear discrimination
Fig. 6 shows the two bi-dimensional graphs of the two
principal nonlinear discrimination components in indepen-
dent action. Fig. 6a, refers to the separation for the four
classes, showing that the classes UC and LP present well-
defined regions and consequently are easily separated by
nonlinear separators. The classes PO and SI present a region
of confusion in the graph with some observations of SI
positioned in the PO region. This had been detected before
when using linear classifiers, since the error classifications
were references of these classes. It may be noted in Fig. 6b,
five classes, that the confusion between NLSI, LSI and PO is
even greater but this is easily explained, as the distinction
between the two classes of SI is complicated due to their
similar features. At this point, the question concerning the
high values of success may arise considering the confusion
of the class domains in the graph. However, the graph only
shows the problem in two dimensions but uses three or four
dimensions for the separation of classes, which increases the
capacity of discrimination. As nonlinear classifiers were
now used, the possibility of separation of these classes
became viable since the neuronal networks are capable of
developing extremely complex separation surfaces and
permit high performance success with the training data, as
was proved. However, coming back to the generalization
[20] problem of the network, the graphs obtained for the
distribution of the nonlinear classifier outputs show that
the success probability for the data not used during the
training is high, however, for the results to be even
more reliable, test patterns will have to be used, which
will certainly be done in future works with the acquisition of
new patterns.
It should be noted that the lack of a high number of
samples (with statistical representation) to have a greater
reliability in the classifiers, is a frequent problem in this area
of research, which can also be seen in the work of Liao [13],
who had a total of 147 samples for study covering six defect
classes and therefore resorted to the technique of Bootstrap
to produce training and test data.
The use of these graphs using the principal components is
very useful for systems with high dimensions, as with Mery
[26], who used 71 features to separate the defect and regular
structure classes in radioscopy of aluminum wheels.
The graph in Fig. 7 represents the results of perform-
ance obtained when using only the first component p1 as
an input vector of the classifier, also with ðp1 þ p2 Þ
independents (bi-dimensional vector) and ðp1 þ p2 Þ coop-
erative (for the two types). The results show that using only
the first component the indices of success reached 92.0% for
the training data with four classes, logically dropping for the
more complex situation of five classes (66.4%). With the use
of two components the indices come very close to those
obtained when using three or four features. It was also
confirmed that there is no significant difference in the
performance between the types of components used. These
results prove the efficiency of the principal components to
reduce the dimension of the original data, maintaining a high
capacity of classification success. For the case studied, the
reduction of size from three or four dimensions to two
dimensions was not justified. However, the results are
motivating for similar studies to be made with larger sized
systems such as the work of Mery [25], because the quantity
of calculations made by the neural network could be
significantly less. The same can be done when using gray
profiles of the weld beads, as in the work of Liao [6,7], where
the input vectors of the classifier could contain 500 or more
components. These techniques for the development of
discrimination components are recent and are not found, at
present in other research applications for the development of
automatic systems for the recognition of weld defects in
radiographic images.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
3.2.3. Principal components of nonlinear discrimination Fig. 6 shows the two bi-dimensional graphs of the twoprincipal nonlinear discrimination components in indepen-dent action. Fig. 6a, refers to the separation for the fourclasses, showing that the classes UC and LP present well-defined regions and consequently are easily separated bynonlinear separators. The classes PO and SI present a regionof confusion in the graph with some observations of SIpositioned in the PO region. This had been detected beforewhen using linear classifiers, since the error classificationswere references of these classes. It may be noted in Fig. 6b,five classes, that the confusion between NLSI, LSI and PO iseven greater but this is easily explained, as the distinctionbetween the two classes of SI is complicated due to theirsimilar features. At this point, the question concerning thehigh values of success may arise considering the confusionof the class domains in the graph. However, the graph onlyshows the problem in two dimensions but uses three or fourdimensions for the separation of classes, which increases thecapacity of discrimination. As nonlinear classifiers werenow used, the possibility of separation of these classesbecame viable since the neuronal networks are capable ofdeveloping extremely complex separation surfaces andpermit high performance success with the training data, aswas proved. However, coming back to the generalization[20] problem of the network, the graphs obtained for thedistribution of the nonlinear classifier outputs show thatthe success probability for the data not used during thetraining is high, however, for the results to be evenmore reliable, test patterns will have to be used, whichwill certainly be done in future works with the acquisition ofnew patterns. It should be noted that the lack of a high number ofsamples (with statistical representation) to have a greaterreliability in the classifiers, is a frequent problem in this areaof research, which can also be seen in the work of Liao [13],who had a total of 147 samples for study covering six defectclasses and therefore resorted to the technique of Bootstrapto produce training and test data. The use of these graphs using the principal components isvery useful for systems with high dimensions, as with Mery[26], who used 71 features to separate the defect and regularstructure classes in radioscopy of aluminum wheels. The graph in Fig. 7 represents the results of perform-ance obtained when using only the first component p1 asan input vector of the classifier, also with ðp1 þ p2 Þindependents (bi-dimensional vector) and ðp1 þ p2 Þ coop-erative (for the two types). The results show that using onlythe first component the indices of success reached 92.0% forthe training data with four classes, logically dropping for themore complex situation of five classes (66.4%). With the useof two components the indices come very close to thoseobtained when using three or four features. It was alsoconfirmed that there is no significant difference in theperformance between the types of components used. Theseresults prove the efficiency of the principal components toreduce the dimension of the original data, maintaining a highcapacity of classification success. For the case studied, thereduction of size from three or four dimensions to twodimensions was not justified. However, the results aremotivating for similar studies to be made with larger sizedsystems such as the work of Mery [25], because the quantityof calculations made by the neural network could besignificantly less. The same can be done when using grayprofiles of the weld beads, as in the work of Liao [6,7], wherethe input vectors of the classifier could contain 500 or morecomponents. These techniques for the development ofdiscrimination components are recent and are not found, atpresent in other research applications for the development ofautomatic systems for the recognition of weld defects inradiographic images.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!

3.2.3. Principal components of nonlinear discrimination
Fig. 6 shows the two bi-dimensional graphs of the two
principal nonlinear discrimination components in indepen-
dent action. Fig. 6a, refers to the separation for the four
classes, showing that the classes UC and LP present well-
defined regions and consequently are easily separated by
nonlinear separators. The classes PO and SI present a region
of confusion in the graph with some observations of SI
positioned in the PO region. This had been detected before
when using linear classifiers, since the error classifications
were references of these classes. It may be noted in Fig. 6b,
five classes, that the confusion between NLSI, LSI and PO is
even greater but this is easily explained, as the distinction
between the two classes of SI is complicated due to their
similar features. At this point, the question concerning the
high values of success may arise considering the confusion
of the class domains in the graph. However, the graph only
shows the problem in two dimensions but uses three or four
dimensions for the separation of classes, which increases the
capacity of discrimination. As nonlinear classifiers were
now used, the possibility of separation of these classes
became viable since the neuronal networks are capable of
developing extremely complex separation surfaces and
permit high performance success with the training data, as
was proved. However, coming back to the generalization
[20] problem of the network, the graphs obtained for the
distribution of the nonlinear classifier outputs show that
the success probability for the data not used during the
training is high, however, for the results to be even
more reliable, test patterns will have to be used, which
will certainly be done in future works with the acquisition of
new patterns.
It should be noted that the lack of a high number of
samples (with statistical representation) to have a greater
reliability in the classifiers, is a frequent problem in this area
of research, which can also be seen in the work of Liao [13],
who had a total of 147 samples for study covering six defect
classes and therefore resorted to the technique of Bootstrap
to produce training and test data.
The use of these graphs using the principal components is
very useful for systems with high dimensions, as with Mery
[26], who used 71 features to separate the defect and regular
structure classes in radioscopy of aluminum wheels.
The graph in Fig. 7 represents the results of perform-
ance obtained when using only the first component p1 as
an input vector of the classifier, also with ðp1 þ p2 Þ
independents (bi-dimensional vector) and ðp1 þ p2 Þ coop-
erative (for the two types). The results show that using only
the first component the indices of success reached 92.0% for
the training data with four classes, logically dropping for the
more complex situation of five classes (66.4%). With the use
of two components the indices come very close to those
obtained when using three or four features. It was also
confirmed that there is no significant difference in the
performance between the types of components used. These
results prove the efficiency of the principal components to
reduce the dimension of the original data, maintaining a high
capacity of classification success. For the case studied, the
reduction of size from three or four dimensions to two
dimensions was not justified. However, the results are
motivating for similar studies to be made with larger sized
systems such as the work of Mery [25], because the quantity
of calculations made by the neural network could be
significantly less. The same can be done when using gray
profiles of the weld beads, as in the work of Liao [6,7], where
the input vectors of the classifier could contain 500 or more
components. These techniques for the development of
discrimination components are recent and are not found, at
present in other research applications for the development of
automatic systems for the recognition of weld defects in
radiographic images.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!

3.2.3 . ส่วนประกอบหลักของเส้นเลือกปฏิบัติ
ภาพที่ 6 แสดงสองบีมิติกราฟสองเส้นหลักจำแนกส่วนประกอบใน indepen
-
บุ๋มการกระทํา รูปที่ 6 หมายถึง การแยกสำหรับ 4
เรียน แสดงให้เห็นว่าบทเรียน UC และ LP ปัจจุบันดี -
de จึงเน็ดภูมิภาคและจากนั้นได้อย่างง่ายดายโดยแยก
ไม่เชิงเส้นคั่น .ชั้นเรียนและศรีปัจจุบันภูมิภาค
สับสนในกราฟด้วยข้อสังเกตบางประการของ Si
ตั้งอยู่ในภูมิภาคโป นี้ได้ถูกตรวจพบก่อน
เมื่อใช้เส้น classi จึง ERS เนื่องจากข้อผิดพลาด classi จึงทำให้
ถูกอ้างอิงจากชั้นเรียนเหล่านี้ มันอาจจะถูกบันทึกไว้ในรูปบน
จึงได้สอนว่า ความสับสนระหว่าง nlsi ญี่ปุ่นและ PO คือ
ยิ่งแต่นี้สามารถอธิบายเช่นความแตกต่างระหว่างสองประเภทของจังหวัด
ซับซ้อนเนื่องจากคุณสมบัติที่คล้ายกันของพวกเขา

ณจุดนี้คำถามเกี่ยวกับ
ค่าสูงของความสำเร็จอาจเกิดขึ้นจากความสับสน
ของคลาสโดเมนในกราฟ แต่กราฟอย่างเดียว
แสดงปัญหาใน 2 มิติแต่ใช้สามหรือสี่
มิติเพื่อแยกห้องเรียน ซึ่งเพิ่ม
ความจุของการเลือกปฏิบัติ เป็นเส้นจึงมี classi ERS
ตอนนี้ใช้ ความเป็นไปได้ของการแยกชั้นเรียน
เหล่านี้กลายเป็นได้ตั้งแต่เครือข่ายและมีความสามารถในการพัฒนาที่ซับซ้อนมากและพื้นผิวการแยก

ให้ประสิทธิภาพสูงความสำเร็จกับข้อมูลการฝึกอบรม เช่น
ถูกพิสูจน์ แต่กลับมา Generalization
[ 20 ] ปัญหาของเครือข่ายกราฟหาความ
การกระจายของเส้น classi จึงเอ้อผลแสดงให้เห็นว่า
ความน่าจะเป็นความสำเร็จสำหรับข้อมูลที่ใช้ไม่ได้ในช่วง
การฝึกอบรมสูง อย่างไรก็ตาม สำหรับผลที่จะได้
เชื่อถือได้มากขึ้น รูปแบบการทดสอบจะต้องใช้ ซึ่งจะต้องทำใน
งานในอนาคตด้วยการซื้อ

รูปแบบใหม่ มันควรจะสังเกตว่าขาดเป็นจำนวนสูงของ
ตัวอย่าง ( ด้วยการเป็นตัวแทนทางสถิติ ) มีความน่าเชื่อถือมากขึ้น
ใน ERS จึง classi มีปัญหาบ่อยในพื้นที่นี้
ของการวิจัย ซึ่งสามารถเห็นได้ในงานของเหลียว [ 13 ]
ใครมีจำนวน 147 ตัวอย่างสำหรับการศึกษาครอบคลุมหกข้อบกพร่อง
บทเรียนจึงหันไปใช้เทคนิค ของบู
ผลิต การฝึกอบรมและทดสอบข้อมูล .
การใช้กราฟเหล่านี้ใช้ ส่วนประกอบหลักคือ
มีประโยชน์มากสำหรับระบบที่มีขนาดสูงเช่นเดียวกับแมรี่
[ 26 ] ใครใช้ 71 คุณลักษณะแยกของเสียและชั้นเรียน
โครงสร้างปกติใน radioscopy ล้ออลูมิเนียม .
กราฟในรูปที่ 7 แสดงผลแสดง -
ance ได้เมื่อใช้เพียง จึงเป็นองค์ประกอบแรกของ P1
อินพุตเวกเตอร์ของ classi จึงเอ้อยังมีð P1 P2
þÞอิสระ ( เวกเตอร์บี ) และð P1 P2 Þþเล้า -
erative ( ทั้ง 2 ประเภท ) ผลที่ได้แสดงให้เห็นว่าการใช้
จึงตัดสินใจเดินทางองค์ประกอบดัชนีของความสำเร็จถึง 92.0% สำหรับ
ข้อมูลการฝึกอบรมกับสี่ชั้นเรียน ตรรกะลดลง
ซับซ้อนมากขึ้นในสถานการณ์จึงได้เรียน ( เป็น % ) กับใช้
สองส่วนดัชนีมาปิดที่
มากๆที่ได้เมื่อใช้สามหรือสี่คุณสมบัติ มันก็ยัง rmed
คอน จึงไม่มี signi จึงไม่สามารถเปรียบเทียบประสิทธิภาพระหว่าง
ชนิดของชิ้นส่วนที่ใช้ ผลลัพธ์เหล่านี้
พิสูจน์ประสิทธิภาพของ EF จึงส่วนประกอบหลัก

ลดขนาดของข้อมูลเดิม รักษาความจุสูง
ของ classi ไอออนบวกจึงสำเร็จ สำหรับกรณีศึกษา
การลดขนาดจากสามหรือสี่มิติสองมิติ ไม่ใช่แค่
จึงเอ็ด อย่างไรก็ดี
สร้างแรงจูงใจให้คล้ายกันการศึกษาให้กับขนาดใหญ่
ระบบเช่นงานของแมรี่ [ 25 ] เพราะปริมาณ
การคำนวณโดยเครือข่ายประสาทสามารถ
signi จึงลดลงอย่างมีนัยสําคัญเมื่อน้อย เดียวกันสามารถทำได้เมื่อใช้สีเทา
Pro จึงเล ของเชื่อม ลูกปัด ในงานเหลียว [ 6 , 7 ]ที่
ใส่เวกเตอร์ของ classi จึงเอ้อประกอบด้วย 500 หรือมากกว่า
ส่วนประกอบ เทคนิคเหล่านี้สำหรับการพัฒนา
ส่วนประกอบการแบ่งแยกเป็นล่าสุดและไม่พบในงานวิจัยอื่นที่
ปัจจุบันสำหรับการพัฒนา
ระบบอัตโนมัติสำหรับการรับรู้เชื่อมข้อบกพร่องใน

ด้วยภาพ
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: