A theoretical method for plate tearing by a rigid wedge is developed in this paper. The studied model is an idealization of ship-grounding and collision damage. The analysis model postulates that the plate curls up into two curved surfaces behind the wedge tip and that the plate material ahead of the wedge is tensioned and ruptured due to the direct pushing. Based on a parametric study, a semi-empirical formula is proposed for determining grounding force in the event of a ship running onto rocks in a high-energy grounding. The bottom strengths of single hull structures and double hull structures in ship-grounding incidents are compared. Finally, simple formulae for determining damage resistance and the extent of damage in ship grounding, expressed in terms of the ship principal particulars, are developed.