olerances are only significant on R2, R6 and C1 (which is polyester or polycarbonate). C2 and C3 are ceramic.
Winding the core
Photo of ferrite toroid with primary and secondary windings I chose to use two windings. Although a more complicated circuit could be devised (which only required one winding) this circuit is cheaper, easier to understand and more flexible. There is nothing special about the number of turns used - just as long as you know how many you have.
The secondary can be made from wire that is as thin as you like, while the primary need only be sufficiently thick not to get hot enough to heat the core much (the saturation level falls fairly rapidly with temperature). I used 0.2mm and 0.5mm respectively.
The equipment
You will need a source of AC current of about 0.3 amp. If you're feeling lazy and don't want to wind as many turns on the primary then you'll need a higher current. I used a lab supply, which gave up to 25V at 50Hz, together with R1 to limit the current. You can improvise other solutions. A mains variac followed by a step-down transformer should work well.
Note: if you wish to measure very small rings with low permeability (such as those used in radio receivers) then you may need a source running at a few kilohertz in order to get sufficient secondary voltage. If you do this then you should also decrease C1.
The oscilloscope must be a dual channel model able to operate in an 'X-Y mode' (with the horizontal deflection controlled by a signal input rather than the timebase). Although you can use AC coupled inputs on the oscilloscope during initial tests make sure that they are set to DC coupling for best accuracy. I used an HP 54600 digital storage 'scope. A DSO is handy if you wish to plot initial magnetization curves.
Component tolerances for R2, R6 and C1 will affect the accuracy of your results.
Adjusting the circuit
The op-amp is used as a voltage integrator. A common problem with this circuit is drift due to voltage and current offsets. R7 helps keep drift under control but you will still need to adjust R5 so that, with no signal in or out of the integrator, the output on pin 1 remains steady.
Interpreting the curves
olerances are only significant on R2, R6 and C1 (which is polyester or polycarbonate). C2 and C3 are ceramic.Winding the corePhoto of ferrite toroid with primary and secondary windings I chose to use two windings. Although a more complicated circuit could be devised (which only required one winding) this circuit is cheaper, easier to understand and more flexible. There is nothing special about the number of turns used - just as long as you know how many you have.The secondary can be made from wire that is as thin as you like, while the primary need only be sufficiently thick not to get hot enough to heat the core much (the saturation level falls fairly rapidly with temperature). I used 0.2mm and 0.5mm respectively.The equipmentYou will need a source of AC current of about 0.3 amp. If you're feeling lazy and don't want to wind as many turns on the primary then you'll need a higher current. I used a lab supply, which gave up to 25V at 50Hz, together with R1 to limit the current. You can improvise other solutions. A mains variac followed by a step-down transformer should work well.Note: if you wish to measure very small rings with low permeability (such as those used in radio receivers) then you may need a source running at a few kilohertz in order to get sufficient secondary voltage. If you do this then you should also decrease C1.The oscilloscope must be a dual channel model able to operate in an 'X-Y mode' (with the horizontal deflection controlled by a signal input rather than the timebase). Although you can use AC coupled inputs on the oscilloscope during initial tests make sure that they are set to DC coupling for best accuracy. I used an HP 54600 digital storage 'scope. A DSO is handy if you wish to plot initial magnetization curves.Component tolerances for R2, R6 and C1 will affect the accuracy of your results.Adjusting the circuitThe op-amp is used as a voltage integrator. A common problem with this circuit is drift due to voltage and current offsets. R7 helps keep drift under control but you will still need to adjust R5 so that, with no signal in or out of the integrator, the output on pin 1 remains steady.Interpreting the curves
การแปล กรุณารอสักครู่..
