Composition, In Vitro Antioxidant and Antimicrobial Activities of Esse การแปล - Composition, In Vitro Antioxidant and Antimicrobial Activities of Esse ไทย วิธีการพูด

Composition, In Vitro Antioxidant a

Composition, In Vitro Antioxidant and Antimicrobial Activities of Essential Oil and Oleoresins Obtained from Black Cumin Seeds (Nigella sativa L.)
Sunita Singh, 1 S. S. Das, 1 G. Singh, 1 ,* Carola Schuff, 2 Marina P. de Lampasona, 2 and César A. N. Catalán 2
Author information ► Article notes ► Copyright and License information ►
Go to:
Abstract
Gas chromatography-mass spectrometry (GC-MS) analysis revealed the major components in black cumin essential oils which were thymoquinone (37.6%) followed by p-cymene (31.2%), α-thujene (5.6%), thymohydroquinone (3.4%), and longifolene (2.0%), whereas the oleoresins extracted in different solvents contain linoleic acid as a major component. The antioxidant activity of essential oil and oleoresins was evaluated against linseed oil system at 200 ppm concentration by peroxide value, thiobarbituric acid value, ferric thiocyanate, ferrous ion chelating activity, and 1,1-diphenyl-2-picrylhydrazyl radical scavenging methods. The essential oil and ethyl acetate oleoresin were found to be better than synthetic antioxidants. The total phenol contents (gallic acid equivalents, mg GAE per g) in black cumin essential oil, ethyl acetate, ethanol, and n-hexane oleoresins were calculated as 11.47 ± 0.05, 10.88 ± 0.9, 9.68 ± 0.06, and 8.33 ± 0.01, respectively, by Folin-Ciocalteau method. The essential oil showed up to 90% zone inhibition against Fusarium moniliforme in inverted petri plate method. Using agar well diffusion method for evaluating antibacterial activity, the essential oil was found to be highly effective against Gram-positive bacteria.

Go to:
1. Introduction
Preservation of food degradation, mainly by oxidation processes or by microorganism activity, during production, storage, and marketing is an important issue in the food industry. There is currently a large interest in substituting synthetic food preservatives and synthetic antioxidants for substance that can be marketed as natural. Synthetic antioxidants such as gallates, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and tert-butyl hydroquinone (TBHQ) were the first preservatives designed for widespread industrial use. However, some physical properties of BHA and BHT, such as their high volatility and instability at elevated temperatures, strict legislation on the use of synthetic food additives, and consumer preferences, have shifted the attention of manufacturers from synthetic to natural antioxidant [1]. It is well known that most spices possess a wide range of biological and pharmacological activities.

Black cumin (Nigella sativa L.) belonging to family Ranunculaceae is a spice that has been used for decades for both culinary and medicinal purposes. It is also used as a natural remedy for asthma, hypertension, diabetes, inflammation, cough, bronchitis, headache, eczema, fever, dizziness, and influenza [2]. The seeds are known to be carminative, stimulant, and diuretic [3]. The essential oil from the seeds of this herbaceous plant has been found to contain high concentrations of thymoquinone and its related compounds such as thymol and dithymoquinone, which have been implicated in the prevention of inflammation [4], antioxidant activities [5], such as quenching reactive oxygen species, antimicrobial activity [6], and anticarcinogenic and antiulcer activity [2].

The present paper deals with the chemistry and antioxidative and antimicrobial behavior of essential oil and oleoresins (extracted in ethanol, ethyl acetate, and n-hexane) of black cumin seeds.

Go to:
2. Materials and Methods
The seeds of black cumin were purchased from the local market of Gorakhpur, Uttar Pradesh, India. A voucher specimen was deposited at the herbarium of the Faculty of Science, DDU Gorakhpur University.

2.1. Reagents

Thiobarbituric acid (TBA), 1,1′-diphenyl-2-picrylhydrazyl radical (DPPH), and linoleic acid are of Acros (New Jersey, USA); butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and propyl gallate (PG) are of S D Fine Chemicals Ltd., Mumbai, India. Folin-Ciocalteu reagent and gallic acid were from Qualigens Chemicals Ltd., Mumbai, India, and Qualikems Chemicals Ltd., New Delhi, India, respectively. Tween 20 and ferrozine were from Merck Pvt. Ltd., Mumbai, India. Ampicillin was purchased from Ranbaxy Fine Chemicals (New Delhi), India. Crude linseed oil was obtained from local oil mill in Gorakhpur. All solvents used were of analytical grade.

2.2. Sample Extraction

Powdered seeds of black cumin (250 g) were subjected to hydrodistillation in Clevenger apparatus for 3 h according to the method recommended by European Pharmacopoeia, [7]. A volatile oil with light orange characteristic odour was obtained with yield of 0.9%. It was dried over anhydrous sodium sulphate and the sample was stored at 4°C before use.

Oleoresins were obtained by extracting 30 g of powdered spice with 300 mL of various solvents (ethanol, ethyl acetate, and n-hexane) for 3 h in Soxhlet extractor. Evaporation of the solvents at reduced pressure gave viscous extracts. The oleoresins were stored in freezer until further use.

2.3. Chemical Characterization

2.3.1. Gas Chromatography-Mass Spectrometry (GC-MS)
Analysis of the volatile oils and oleoresins was run on a Hewlett Packard (6890) GC-Ms system coupled to a quadruple mass spectrometer (model HP 5973) with a capillary column of HP-5MS (5% phenyl methylsiloxane; length = 30 m, inner diameter = 0.25 mm, and film thickness = 0.25 μm). GC-MS interphase, ion source, and selective mass detector temperatures were maintained at 280°C, 230°C, and 150°C, respectively. Carrier gas used was helium with a flow rate of 1.0 mL min−1. The oven temperature was programmed as follows.

For essential oil: at 60°C for 1 min then increased from 60 to 185°C at the rate of 1.5°C min−1 and held at the rate of 9°C min−1 and held at 275°C for 2 min.

For oleoresin: 60°C for zero min then increased from 60 to 300°C at the rate of 1.5°C min−1 and held at the rate of 5°C min−1 and held at 300°C for 10 min.

2.4. Identification of Components

Most of the components were identified on the basis of comparison of their retention indices and mass spectra with published data [6, 8, 9], and computer matching was done with the Wiley 275 and National Institute of Standards Technology libraries provided with the computer controlling GC-MS systems. The retention indices were calculated using a homologous series of n-alkanes C8–C18 and C8–C22 for essential oil and oleoresins, respectively, which are reported in Tables ​Tables11 and ​and22.

Table 1
Table 1
Chemical composition of essential oil obtained from black cumin seeds analyzed by GC-MS.
Table 2
Table 2
Chemical composition of oleoresins obtained from black cumin (Nigella sativa L.) seeds in different solvents analysed by GC-MS.
Go to:
3. Antioxidant Activity
The antioxidant activity is system dependent and according to the method adopted and lipid system used as substrate. Hence, different methods have been adopted in order to assess antioxidative potential of black cumin oil and its oleoresins are as follows.

3.1. Chelating Activity on Ferrous Ions

The chelating activity of the aqueous and ethanolic extract on ferrous ions (Fe2+) was measured according to the method described by Decker and Welch [10]. Aliquots of 1 mL of different concentrations of the samples were mixed with 3.7 mL of deionized water. The mixture was incubated with FeCl2 (2 mM, 0.1 mL). After incubation the reaction was initiated by addition of ferrozine (5 mM and 0.2 mL) for 10 min at room temperature, and then the absorbance was measured at 562 nm in a spectrophotometer. A lower absorbance indicates a higher chelating power. The chelating activity of the extract on Fe2+ was compared with that of EDTA that was used as positive control. Chelating activity was calculated using the following formula:

Chelating  activity(%)  =[1−(Absorbance  of  sampleAbsorbance  of  control)]×100.
(1)
3.2. Scavenging Effect on DPPH

The DPPH assay constitutes a quick and low cost method, which has frequently been used for the evaluation of the antioxidative potential of various natural products, [11]. Due to its odd electron, DPPH gives a strong absorption band at 517 nm (deep violet colour). In the presence of a free radical scavenger, this electron becomes paired, resulting in the absorption loss and consecutive stoichiometric decolorization with respect to the number of electron acquired. The absorbance change produced by this reaction is assessed to evaluate the antioxidant potential of the test sample. 5, 10, 15, and 20 μL of the sample were added to 5 mL of 0.004% methanol solution of DPPH. After a 30 min incubation period at room temperature, the absorbance was read against a blank at 515 nm. All determination was performed in triplicate and results were performed in triplicate and results are reported as scavenging effect (%) versus concentration in Figure 2.

Figure 2
Figure 2
Scavenging effect (%) of black cumin oil and its oleoresins on DPPH radical.
3.3. Estimation of Total Phenolic Content (TPC)

TPC were determined using the Folin-Ciocalteu reagent method described by Singleton and Rossi [12]. Gallic acid stock solution (1000 μg mL−1) was prepared by dissolving 100 mg of gallic acid in 100 mL of ethanol. Various dilutions of standard gallic acid were prepared from this stock solution. Calibration curve (Figure 3) was plotted by mixing 1 mL aliquots of 10–100 μg mL−1 of gallic acid solutions with 5.0 mL of Folin-Ciocalteu reagent (diluted tenfold) and 4.0 mL of sodium carbonate solution (75 g L−1). The absorbance was measured after 30 min at 20°C at 765 nm.

Figure 3
Figure 3
Calibration curve of gallic acid.
Go to:
4. Evaluation of Antioxidant Activity for Linseed Oil System
For present investigation, crude linseed oil, having initial peroxide value 5.2 meq kg−1, was taken to assess the antioxidant
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
องค์ประกอบ ในหลอดสารต้านอนุมูลอิสระ และต้านจุลชีพกิจกรรมของน้ำมันหอมระเหย และ Oleoresins ได้จากเมล็ดผงยี่หร่าดำ (Nigella ซา L.)Sunita สิงห์ 1 S. S. Das สิงห์กรัม 1, 1, * Carola Schuff, 2 มารีน่าพีเดอ Lampasona, 2 และ 2 Catalán ตอนเหนือ A. Césarเขียนข้อมูล►บทความบันทึก►ลิขสิทธิ์และสิทธิ์การใช้งานข้อมูล►ลุยเลย:บทคัดย่อGas chromatography-mass spectrometry (GC-MS) analysis revealed the major components in black cumin essential oils which were thymoquinone (37.6%) followed by p-cymene (31.2%), α-thujene (5.6%), thymohydroquinone (3.4%), and longifolene (2.0%), whereas the oleoresins extracted in different solvents contain linoleic acid as a major component. The antioxidant activity of essential oil and oleoresins was evaluated against linseed oil system at 200 ppm concentration by peroxide value, thiobarbituric acid value, ferric thiocyanate, ferrous ion chelating activity, and 1,1-diphenyl-2-picrylhydrazyl radical scavenging methods. The essential oil and ethyl acetate oleoresin were found to be better than synthetic antioxidants. The total phenol contents (gallic acid equivalents, mg GAE per g) in black cumin essential oil, ethyl acetate, ethanol, and n-hexane oleoresins were calculated as 11.47 ± 0.05, 10.88 ± 0.9, 9.68 ± 0.06, and 8.33 ± 0.01, respectively, by Folin-Ciocalteau method. The essential oil showed up to 90% zone inhibition against Fusarium moniliforme in inverted petri plate method. Using agar well diffusion method for evaluating antibacterial activity, the essential oil was found to be highly effective against Gram-positive bacteria.Go to:1. IntroductionPreservation of food degradation, mainly by oxidation processes or by microorganism activity, during production, storage, and marketing is an important issue in the food industry. There is currently a large interest in substituting synthetic food preservatives and synthetic antioxidants for substance that can be marketed as natural. Synthetic antioxidants such as gallates, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and tert-butyl hydroquinone (TBHQ) were the first preservatives designed for widespread industrial use. However, some physical properties of BHA and BHT, such as their high volatility and instability at elevated temperatures, strict legislation on the use of synthetic food additives, and consumer preferences, have shifted the attention of manufacturers from synthetic to natural antioxidant [1]. It is well known that most spices possess a wide range of biological and pharmacological activities.Black cumin (Nigella sativa L.) belonging to family Ranunculaceae is a spice that has been used for decades for both culinary and medicinal purposes. It is also used as a natural remedy for asthma, hypertension, diabetes, inflammation, cough, bronchitis, headache, eczema, fever, dizziness, and influenza [2]. The seeds are known to be carminative, stimulant, and diuretic [3]. The essential oil from the seeds of this herbaceous plant has been found to contain high concentrations of thymoquinone and its related compounds such as thymol and dithymoquinone, which have been implicated in the prevention of inflammation [4], antioxidant activities [5], such as quenching reactive oxygen species, antimicrobial activity [6], and anticarcinogenic and antiulcer activity [2].The present paper deals with the chemistry and antioxidative and antimicrobial behavior of essential oil and oleoresins (extracted in ethanol, ethyl acetate, and n-hexane) of black cumin seeds.Go to:2. Materials and MethodsThe seeds of black cumin were purchased from the local market of Gorakhpur, Uttar Pradesh, India. A voucher specimen was deposited at the herbarium of the Faculty of Science, DDU Gorakhpur University.2.1. ReagentsThiobarbituric acid (TBA), 1,1′-diphenyl-2-picrylhydrazyl radical (DPPH), and linoleic acid are of Acros (New Jersey, USA); butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and propyl gallate (PG) are of S D Fine Chemicals Ltd., Mumbai, India. Folin-Ciocalteu reagent and gallic acid were from Qualigens Chemicals Ltd., Mumbai, India, and Qualikems Chemicals Ltd., New Delhi, India, respectively. Tween 20 and ferrozine were from Merck Pvt. Ltd., Mumbai, India. Ampicillin was purchased from Ranbaxy Fine Chemicals (New Delhi), India. Crude linseed oil was obtained from local oil mill in Gorakhpur. All solvents used were of analytical grade.2.2. Sample ExtractionPowdered seeds of black cumin (250 g) were subjected to hydrodistillation in Clevenger apparatus for 3 h according to the method recommended by European Pharmacopoeia, [7]. A volatile oil with light orange characteristic odour was obtained with yield of 0.9%. It was dried over anhydrous sodium sulphate and the sample was stored at 4°C before use.Oleoresins were obtained by extracting 30 g of powdered spice with 300 mL of various solvents (ethanol, ethyl acetate, and n-hexane) for 3 h in Soxhlet extractor. Evaporation of the solvents at reduced pressure gave viscous extracts. The oleoresins were stored in freezer until further use.2.3. Chemical Characterization2.3.1. Gas Chromatography-Mass Spectrometry (GC-MS)Analysis of the volatile oils and oleoresins was run on a Hewlett Packard (6890) GC-Ms system coupled to a quadruple mass spectrometer (model HP 5973) with a capillary column of HP-5MS (5% phenyl methylsiloxane; length = 30 m, inner diameter = 0.25 mm, and film thickness = 0.25 μm). GC-MS interphase, ion source, and selective mass detector temperatures were maintained at 280°C, 230°C, and 150°C, respectively. Carrier gas used was helium with a flow rate of 1.0 mL min−1. The oven temperature was programmed as follows.

For essential oil: at 60°C for 1 min then increased from 60 to 185°C at the rate of 1.5°C min−1 and held at the rate of 9°C min−1 and held at 275°C for 2 min.

For oleoresin: 60°C for zero min then increased from 60 to 300°C at the rate of 1.5°C min−1 and held at the rate of 5°C min−1 and held at 300°C for 10 min.

2.4. Identification of Components

Most of the components were identified on the basis of comparison of their retention indices and mass spectra with published data [6, 8, 9], and computer matching was done with the Wiley 275 and National Institute of Standards Technology libraries provided with the computer controlling GC-MS systems. The retention indices were calculated using a homologous series of n-alkanes C8–C18 and C8–C22 for essential oil and oleoresins, respectively, which are reported in Tables ​Tables11 and ​and22.

Table 1
Table 1
Chemical composition of essential oil obtained from black cumin seeds analyzed by GC-MS.
Table 2
Table 2
Chemical composition of oleoresins obtained from black cumin (Nigella sativa L.) seeds in different solvents analysed by GC-MS.
Go to:
3. Antioxidant Activity
The antioxidant activity is system dependent and according to the method adopted and lipid system used as substrate. Hence, different methods have been adopted in order to assess antioxidative potential of black cumin oil and its oleoresins are as follows.

3.1. Chelating Activity on Ferrous Ions

The chelating activity of the aqueous and ethanolic extract on ferrous ions (Fe2+) was measured according to the method described by Decker and Welch [10]. Aliquots of 1 mL of different concentrations of the samples were mixed with 3.7 mL of deionized water. The mixture was incubated with FeCl2 (2 mM, 0.1 mL). After incubation the reaction was initiated by addition of ferrozine (5 mM and 0.2 mL) for 10 min at room temperature, and then the absorbance was measured at 562 nm in a spectrophotometer. A lower absorbance indicates a higher chelating power. The chelating activity of the extract on Fe2+ was compared with that of EDTA that was used as positive control. Chelating activity was calculated using the following formula:

Chelating  activity(%)  =[1−(Absorbance  of  sampleAbsorbance  of  control)]×100.
(1)
3.2. Scavenging Effect on DPPH

The DPPH assay constitutes a quick and low cost method, which has frequently been used for the evaluation of the antioxidative potential of various natural products, [11]. Due to its odd electron, DPPH gives a strong absorption band at 517 nm (deep violet colour). In the presence of a free radical scavenger, this electron becomes paired, resulting in the absorption loss and consecutive stoichiometric decolorization with respect to the number of electron acquired. The absorbance change produced by this reaction is assessed to evaluate the antioxidant potential of the test sample. 5, 10, 15, and 20 μL of the sample were added to 5 mL of 0.004% methanol solution of DPPH. After a 30 min incubation period at room temperature, the absorbance was read against a blank at 515 nm. All determination was performed in triplicate and results were performed in triplicate and results are reported as scavenging effect (%) versus concentration in Figure 2.

Figure 2
Figure 2
Scavenging effect (%) of black cumin oil and its oleoresins on DPPH radical.
3.3. Estimation of Total Phenolic Content (TPC)

TPC were determined using the Folin-Ciocalteu reagent method described by Singleton and Rossi [12]. Gallic acid stock solution (1000 μg mL−1) was prepared by dissolving 100 mg of gallic acid in 100 mL of ethanol. Various dilutions of standard gallic acid were prepared from this stock solution. Calibration curve (Figure 3) was plotted by mixing 1 mL aliquots of 10–100 μg mL−1 of gallic acid solutions with 5.0 mL of Folin-Ciocalteu reagent (diluted tenfold) and 4.0 mL of sodium carbonate solution (75 g L−1). The absorbance was measured after 30 min at 20°C at 765 nm.

Figure 3
Figure 3
Calibration curve of gallic acid.
Go to:
4. Evaluation of Antioxidant Activity for Linseed Oil System
For present investigation, crude linseed oil, having initial peroxide value 5.2 meq kg−1, was taken to assess the antioxidant
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
องค์ประกอบในหลอดทดลองสารต้านอนุมูลอิสระและต้านจุลชีพกิจกรรมของน้ำมันหอมระเหยและ Oleoresins ที่ได้รับจากเมล็ดยี่หร่าดำ (Nigella sativa L. )
สุนิตาสิงห์ 1 SS ดา 1 กรัมซิงห์, 1, * Carola Schuff 2 Marina พีเดอ Lampasona 2 และCésarCatalán 2
ข้อมูลผู้เขียนบันทึกบทความ►►ลิขสิทธิ์และใบอนุญาตข้อมูล►
ไปที่:
บทคัดย่อ
แก๊สโครมาโต-มวลสาร (GC-MS) การวิเคราะห์เปิดเผยส่วนประกอบที่สำคัญในน้ำมันหอมระเหยสีดำยี่หร่าซึ่งเป็น thymoquinone (37.6%) ตามด้วย P -cymene (31.2%), α-thujene (5.6%), thymohydroquinone (3.4%) และ longifolene (2.0%) ในขณะที่ oleoresins สกัดในตัวทำละลายที่แตกต่างกันมีกรดไลโนเลอิกเป็นองค์ประกอบหลัก ฤทธิ์ต้านอนุมูลอิสระของน้ำมันหอมระเหยและ oleoresins ถูกประเมินกับระบบน้ำมันลินสีดที่ความเข้มข้น 200 พีพีเอ็มด้วยค่าเปอร์ออกไซด์ค่ากรดด่างทั้งหมดที่ระเหย, thiocyanate ferric กิจกรรมจับไอออนเหล็กและ 1,1-diphenyl-2-picrylhydrazyl วิธีการต้านอนุมูล น้ำมันหอมระเหยและเอทิลอะซิเต oleoresin พบว่ามีสารต้านอนุมูลอิสระที่ดีกว่าสังเคราะห์ เนื้อหาทั้งหมดฟีนอล (เทียบเท่ากรดแกลลิมิลลิกรัมต่อกรัม GAE) ในสีดำยี่หร่าน้ำมันหอมระเหย, เอทิลอะซีเต, เอทานอลและ oleoresins เฮกเซนจะถูกคำนวณเป็น 11.47 ± 0.05, 10.88 ± 0.9, 9.68 ± 0.06 และ 8.33 ± 0.01, ตามลำดับด้วยวิธี Folin-Ciocalteau น้ำมันหอมระเหยที่แสดงให้เห็นถึงการยับยั้งโซน 90% เทียบกับเชื้อรา Fusarium moniliforme วิธีจานเพาะเชื้อคว่ำ โดยใช้วิธีการแพร่กระจายได้ดีวุ้นสำหรับการประเมินฤทธิ์ต้านแบคทีเรีย, น้ำมันหอมระเหยที่ได้รับพบว่ามีประสิทธิภาพสูงต่อต้านแบคทีเรียแกรมบวก. ไปที่: 1 การแนะนำการดูแลรักษาการย่อยสลายอาหารส่วนใหญ่โดยกระบวนการออกซิเดชั่หรือกิจกรรมจุลินทรีย์ในระหว่างการผลิตการจัดเก็บและการตลาดเป็นเรื่องที่สำคัญในอุตสาหกรรมอาหาร ขณะนี้เป็นที่น่าสนใจมากในการทดแทนสารกันบูดอาหารสังเคราะห์และสารต้านอนุมูลอิสระสังเคราะห์สารที่สามารถวางตลาดเป็นธรรมชาติ สารต้านอนุมูลอิสระสังเคราะห์เช่น gallates, butylated hydroxytoluene (BHT) butylated hydroxyanisole (BHA) และ hydroquinone tert บิวทิล (TBHQ) เป็นสารกันบูดแรกที่ออกแบบมาสำหรับใช้ในอุตสาหกรรมอย่างกว้างขวาง แต่บางคุณสมบัติทางกายภาพของ BHA และ BHT เช่นความผันผวนที่สูงของพวกเขาและความไม่แน่นอนที่อุณหภูมิสูง, การออกกฎหมายที่เข้มงวดเกี่ยวกับการใช้วัตถุเจือปนอาหารสังเคราะห์และการตั้งค่าของผู้บริโภคได้เปลี่ยนความสนใจของผู้ผลิตจากสังเคราะห์สารต้านอนุมูลอิสระธรรมชาติ [1] มันเป็นที่รู้จักกันดีว่าเครื่องเทศมากที่สุดมีความหลากหลายของกิจกรรมทางชีวภาพและเภสัชวิทยา. ยี่หร่าดำ (Nigella sativa L. ) ที่อยู่ในประเภทครอบครัว Ranunculaceae เป็นเครื่องเทศที่มีการใช้มานานหลายทศวรรษสำหรับทั้งวัตถุประสงค์ในการทำอาหารและยา นอกจากนี้ยังใช้เป็นยาธรรมชาติสำหรับโรคหอบหืดความดันโลหิตสูง, โรคเบาหวาน, การอักเสบ, ไอ, หลอดลมอักเสบ, ปวดหัว, กลากไข้เวียนหัวและไข้หวัดใหญ่ [2] เมล็ดพันธุ์ที่รู้จักกันเป็นยาขับลมกระตุ้นและขับปัสสาวะ [3] น้ำมันหอมระเหยจากเมล็ดของพืชสมุนไพรนี้ได้รับพบว่ามีความเข้มข้นสูงของ thymoquinone และสารประกอบที่เกี่ยวข้องเช่นไทมอลและ dithymoquinone ซึ่งมีส่วนเกี่ยวข้องในการป้องกันการอักเสบ [4] ฤทธิ์ต้านอนุมูลอิสระได้ [5] เช่น ดับออกซิเจนสายพันธุ์, ฤทธิ์ต้านจุลชีพ [6] และมะเร็งและกิจกรรม antiulcer [2]. ข้อเสนอกระดาษในปัจจุบันที่มีคุณสมบัติทางเคมีและสารต้านอนุมูลอิสระและพฤติกรรมต้านจุลชีพของน้ำมันหอมระเหยและ oleoresins (สกัดในเอทานอลเอทิลอะซิเตและเฮกเซน) . ของเมล็ดยี่หร่าดำไปที่: 2 วัสดุและวิธีการของเมล็ดยี่หร่าดำที่ซื้อมาจากตลาดในประเทศของวูอุตตรประเทศอินเดีย ตัวอย่างบัตรกำนัลถูกวางในสมุนไพรของคณะวิทยาศาสตร์มหาวิทยาลัยวู DDU. 2.1 รีเอเจนต์กรดด่างทั้งหมดที่ระเหย (TBA), 1,1'-diphenyl-2-picrylhydrazyl รุนแรง (DPPH) และกรดไลโนเลอิกที่มี Acros (นิวเจอร์ซีย์สหรัฐอเมริกา); butylated hydroxytoluene (BHT) butylated hydroxyanisole (BHA) และโพรพิ gallate (PG) มี SD Fine Chemicals จำกัด มุมไบประเทศอินเดีย Folin-Ciocalteu น้ำยาและกรดแกลลิมาจาก Qualigens เคมีภัณฑ์ จำกัด , มุมไบ, อินเดีย, และ Qualikems เคมีภัณฑ์ จำกัด , นิวเดลี, อินเดีย, ตามลำดับ Tween 20 และ ferrozine มาจากเมอร์ค Pvt จำกัด , มุมไบประเทศอินเดีย ampicillin ซื้อมาจาก Ranbaxy Fine Chemicals (New Delhi) อินเดีย น้ำมันลินสีดน้ำมันดิบที่ได้รับจากโรงงานสกัดน้ำมันในท้องถิ่นวู ตัวทำละลายทั้งหมดที่ใช้เป็นของเกรดวิเคราะห์. 2.2 ตัวอย่างการสกัดผงเมล็ดของยี่หร่าดำ (250 กรัม) ถูกยัดเยียดให้ต้มกลั่นในอุปกรณ์ Clevenger เวลา 3 ชั่วโมงตามวิธีการที่แนะนำโดยยุโรปตำรับ [7] น้ำมันหอมระเหยที่มีกลิ่นลักษณะแสงสีส้มที่ได้รับกับอัตราผลตอบแทนที่ 0.9% มันก็แห้งกว่าโซเดียมซัลเฟตปราศจากและตัวอย่างที่ถูกเก็บไว้ที่อุณหภูมิ 4 องศาเซลเซียสก่อนการใช้งาน. Oleoresins ที่ได้จากการสกัด 30 กรัมของผงเครื่องเทศกับ 300 มิลลิลิตรของตัวทำละลายต่างๆ (เอทานอลเอทิลอะซิเตและเฮกเซน) เป็นเวลา 3 ชั่วโมงใน วิธีการสกัดแบบแยก การระเหยของตัวทำละลายที่ความดันลดลงให้สารสกัดที่มีความหนืด oleoresins ถูกเก็บไว้ในช่องแช่แข็งจนใช้งานต่อไป. 2.3 เคมีลักษณะ2.3.1 Gas Chromatography-มวลสาร (GC-MS) การวิเคราะห์ของน้ำมันหอมระเหยและ oleoresins ได้รับการทำงานในฮิวเลตต์แพคการ์ด (6890) ระบบ GC-Ms คู่กับสเปกโตรมิเตอร์มวลสี่เท่า (รุ่น HP 5973) กับคอลัมน์เส้นเลือดฝอยของ HP-5MS ( 5% methylsiloxane phenyl ความยาว = 30 เมตรเส้นผ่าศูนย์กลางภายใน = 0.25 มิลลิเมตรและความหนาของฟิล์ม = 0.25 ไมครอน) GC-MS ระหว่างเฟส, แหล่งกำเนิดไอออนและอุณหภูมิเครื่องตรวจจับมวลเลือกที่ถูกเก็บรักษาไว้ที่ 280 ° C, 230 ° C และ 150 ° C ตามลำดับ ขนส่งก๊าซที่ใช้เป็นก๊าซฮีเลียมที่มีอัตราการไหล 1.0 มิลลิลิตรนาที 1 อุณหภูมิเตาอบเป็นโปรแกรมดังนี้. สำหรับน้ำมันหอมระเหย: ที่ 60 องศาเซลเซียสเป็นเวลา 1 นาทีจากนั้นเพิ่มขึ้น 60-185 ° C ที่อัตรา 1.5 ° C นาทีที่ 1 และจัดขึ้นที่อัตรา 9 ° C นาทีที่ 1 และ จัดขึ้นที่ 275 องศาเซลเซียสเป็นเวลา 2 นาที. สำหรับ oleoresin: 60 องศาเซลเซียสสำหรับศูนย์นาทีแล้วเพิ่มขึ้น 60-300 ° C ที่อัตรา 1.5 ° C นาทีที่ 1 และจัดขึ้นที่อัตรา 5 ° C นาทีที่ 1 และจัดขึ้น ที่ 300 องศาเซลเซียสเป็นเวลา 10 นาที. 2.4 บัตรประจำตัวของส่วนประกอบส่วนใหญ่ขององค์ประกอบที่ถูกระบุบนพื้นฐานของการเปรียบเทียบดัชนีการเก็บรักษาของพวกเขาและมวลสเปกตรัมกับข้อมูลที่ตีพิมพ์ [6, 8, 9], คอมพิวเตอร์และการจับคู่ทำด้วยไวลีย์ 275 และสถาบันมาตรฐานห้องสมุดเทคโนโลยีให้กับ คอมพิวเตอร์ควบคุมระบบ GC-MS ดัชนีการเก็บรักษาจะถูกคำนวณโดยใช้ชุดคล้ายคลึงกัน n-alkanes C8-C18 และ C22-C8 สำหรับน้ำมันหอมระเหยและ oleoresins ตามลำดับซึ่งจะมีการรายงานในตารางที่ Tables11 และ and22. ตารางที่ 1 ตารางที่ 1 องค์ประกอบทางเคมีของน้ำมันหอมระเหยที่ได้รับจาก เมล็ดยี่หร่าดำวิเคราะห์โดย GC-MS. ตารางที่ 2 ตารางที่ 2 องค์ประกอบทางเคมีของ oleoresins ที่ได้รับจากยี่หร่าดำ (Nigella sativa L. ) เมล็ดในตัวทำละลายที่แตกต่างกันวิเคราะห์โดย GC-MS. ไปที่: 3 ฤทธิ์ต้านอนุมูลอิสระสารต้านอนุมูลอิสระเป็นระบบขึ้นและเป็นไปตามวิธีการที่นำมาใช้และระบบไขมันมาใช้เป็นสารตั้งต้น ดังนั้นวิธีการที่แตกต่างกันได้รับการรับรองเพื่อประเมินศักยภาพของสารต้านอนุมูลอิสระของน้ำมันยี่หร่าดำและ oleoresins ของมันมีดังนี้. 3.1 คีเลตกิจกรรมเหล็กไอออนกิจกรรมการจับของสารสกัดและเอทานอลในไอออนเหล็ก (Fe2 +) วัดตามวิธีการอธิบายโดยฉูดฉาดและเวลช์ [10] ส่วนลงตัวของ 1 มิลลิลิตรของความเข้มข้นที่แตกต่างกันของกลุ่มตัวอย่างได้รับการผสมกับ 3.7 มิลลิลิตรของน้ำกลั่นปราศจากไอออน ส่วนผสมที่ถูกบ่มกับ FeCl2 (2 มิลลิ 0.1 มิลลิลิตร) หลังจากการบ่มปฏิกิริยาได้ริเริ่มขึ้นโดยนอกเหนือจาก ferrozine (5 มิลลิและ 0.2 มิลลิลิตร) เป็นเวลา 10 นาทีที่อุณหภูมิห้องและจากนั้นดูดกลืนแสงวัดที่ 562 นาโนเมตรในสเปก การดูดกลืนแสงที่ลดลงแสดงให้เห็นอำนาจคีเลตที่สูงขึ้น กิจกรรมการจับของสารสกัดใน Fe2 + เมื่อเทียบกับที่ของ EDTA ที่ถูกใช้เป็นตัวควบคุมบวก กิจกรรมการจับที่คำนวณโดยใช้สูตรต่อไปนี้: กิจกรรม Chelating (%) = [1 (การดูดกลืนแสงของ sampleAbsorbance ของการควบคุม)] × 100. (1) 3.2 Scavenging ผลกระทบต่อ DPPH ทดสอบ DPPH ถือว่าเป็นวิธีที่รวดเร็วและต้นทุนต่ำซึ่งได้รับการใช้บ่อยสำหรับการประเมินผลของสารต้านอนุมูลอิสระที่มีศักยภาพของผลิตภัณฑ์ธรรมชาติต่างๆ [11] เนื่องจากอิเล็กตรอนแปลกของ DPPH ให้วงดูดซึมที่แข็งแกร่งที่ 517 นาโนเมตร (สีม่วงลึก) ในการปรากฏตัวของกินของเน่าอนุมูลอิสระอิเล็กตรอนนี้จะกลายเป็นคู่ที่มีผลในการสูญเสียการดูดซึมและกำจัดสี stoichiometric ติดต่อกันด้วยความเคารพกับจำนวนของอิเล็กตรอนที่ได้มา การเปลี่ยนแปลงการดูดกลืนแสงที่ผลิตโดยปฏิกิริยานี้จะมีการประเมินเพื่อประเมินศักยภาพการต้านอนุมูลอิสระของตัวอย่างทดสอบ 5, 10, 15, และ 20 ไมโครลิตรของกลุ่มตัวอย่างมีการเพิ่มถึง 5 มิลลิลิตร 0.004% วิธีการแก้ปัญหาของเมทานอล DPPH หลังจากระยะฟักตัว 30 นาทีที่อุณหภูมิห้อง, การดูดกลืนแสงได้อ่านกับว่างเปล่าที่ 515 นาโนเมตร ความมุ่งมั่นทั้งหมดได้รับการดำเนินการในเพิ่มขึ้นสามเท่าและผลการดำเนินการในเพิ่มขึ้นสามเท่าและผลที่ได้รับรายงานว่ามีผลขับ (%) เมื่อเทียบกับความเข้มข้นในรูปที่ 2. รูปที่ 2 รูปที่ 2 ท่อถ่ายผลกระทบ (%) ของน้ำมันยี่หร่าดำและ oleoresins ที่มีต่อ DPPH รุนแรง. 3.3 การประมาณค่าทั้งหมดฟีนอลิเนื้อหา (RDC) TPC ได้รับการพิจารณาโดยใช้วิธีน้ำยา Folin-Ciocalteu อธิบายโดยซิงเกิลและรอสซี [12] กรดแกลลิแก้ปัญหาสต็อก (1,000 ไมโครกรัมต่อมิลลิลิตร-1) ถูกจัดทำขึ้นโดยการละลาย 100 มิลลิกรัมกรดแกลลิใน 100 มลเอทานอล เจือจางต่างๆของกรดแกลลิมาตรฐานที่เตรียมจากสารละลายนี้ เส้นโค้งการสอบเทียบ (รูปที่ 3) ได้รับการวางแผนโดยการผสม aliquots 1 มิลลิลิตรของ 10-100 ไมโครกรัมต่อมิลลิลิตร-1 ของสารละลายกรดแกลลิกับ 5.0 มลสาร Folin-Ciocalteu (ปรับลดเป็นสิบเท่า) และ 4.0 มิลลิลิตรของสารละลายโซเดียมคาร์บอเนต (75 g L-1 ) การดูดกลืนแสงวัดหลังจาก 30 นาทีที่ 20 ° C ที่ 765 นาโนเมตร. รูปที่ 3 รูปที่ 3 เส้นโค้งการสอบเทียบของกรดแกลลิ. ไปที่: 4 การประเมินผลของฤทธิ์ต้านอนุมูลอิสระสำหรับระบบน้ำมันลินซีดสำหรับการตรวจสอบปัจจุบันน้ำมันลินสีดน้ำมันดิบมีค่าเปอร์ออกไซด์เริ่มต้น 5.2 mEq กก-1, ถูกนำไปประเมินสารต้านอนุมูลอิสระ




































































การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
ส่วนประกอบในการต้านจุลชีพของน้ำมันระเหยและกิจกรรม - ที่ได้จากเมล็ดยี่หร่าดำ ( ไนเจลลา sativa L . )
1 S . s สุนิตา ซิงห์ , DAS , 1 กรัม ซิงห์ , 1 , * คาโรล่า schuff 2 ท่าเรือหน้าเดอ lampasona 2 และ C é sar . . เร่ง . kgm N 2
►บทความผู้เขียนข้อมูล หมายเหตุ►ลิขสิทธิ์และใบอนุญาต
►ข้อมูลไป

: บทคัดย่อแก๊ส Spectrometry ( GC-MS ) สัปดาห์การวิเคราะห์องค์ประกอบหลักในสีดำยี่หร่าน้ำมันหอมระเหยซึ่ง thymoquinone ( 37.6 % ) รองลงมา คือ p-cymene ( 31.2 % ) , แอลฟาทูจีน ( 5.6% ) , thymohydroquinone ( 3.4% ) และ longifolene ( 2.0% ) , ในขณะที่ - สกัดในตัวทำละลายที่แตกต่างกันมีกรดไลโนเลอิกเป็น ส่วนประกอบหลักสารต้านอนุมูลอิสระของ - น้ำมันที่จำเป็นและถูกประเมินเทียบกับระบบน้ำมันลินซีดที่ความเข้มข้น 200 ppm  โดยค่าเปอร์ออกไซด์ , กรดไทโอไซยาเนตเท่ากับค่าเฟอร์รัสไอออน , และกิจกรรม 1,1-diphenyl-2-picrylhydrazyl เป็นตัวเร่งปฏิกิริยาและวิธีการ น้ำมันหอมระเหย และเอทิลอะซิเตท โอลีโอเรซิน พบว่าดีกว่าสารต้านอนุมูลอิสระสังเคราะห์เนื้อหาฟีนอลรวม ( เพิ่มขึ้นเทียบเท่า mg  เก ต่อ กรัม ) ในน้ำมันยี่หร่าดำ , เอทิลอะซิเตท เอทานอล และบีบ - คำนวณเป็น±ต่ำกว่าระดับ 10.88 ± 0.9 , 9.68 ± 0.06 และ 8.33 ± 0.01 ตามลำดับ โดยวิธี ciocalteau folin . น้ำมันระเหย พบได้ถึง 90 เปอร์เซ็นต์การยับยั้งเชื้อรา Fusarium คว่ำจานเพาะเลี้ยงต่อในวิธีการใช้วิธีดี agar เพื่อประเมินฤทธิ์ต้านแบคทีเรีย , น้ำมันหอมระเหย พบว่ามีประสิทธิภาพสูงกับแบคทีเรียกรัมบวก

ไป :
1 บทนำ
รักษาของการย่อยสลายอาหารส่วนใหญ่โดยกระบวนการออกซิเดชันหรือโดยกิจกรรมของจุลินทรีย์ในระหว่างการผลิต การจัดเก็บ และการตลาดเป็นปัญหาที่สำคัญในอุตสาหกรรมอาหารปัจจุบันมีความสนใจมากในแทนสารกันบูดในอาหารสังเคราะห์และสารสังเคราะห์สารที่สามารถตลาดที่เป็นธรรมชาติ สารต้านอนุมูลอิสระสังเคราะห์ เช่น แกลเลทจักรภพ ( บาท ) , อาการเกร็งหลังแอ่น ( bha ) และ tert butyl hydroquinone ( TBHQ ) เป็นสารกันบูดที่ออกแบบมาสำหรับใช้ในอุตสาหกรรมอย่างแพร่หลาย อย่างไรก็ตามคุณสมบัติทางกายภาพบางประการของ bha กับบาท เช่นของพวกเขาสูงความผันผวนและความไม่แน่นอนที่อุณหภูมิสูง กฎหมายที่เข้มงวดเกี่ยวกับการใช้สารสังเคราะห์อาหาร และความต้องการของผู้บริโภคได้เปลี่ยนความสนใจของผู้ผลิตจากสังเคราะห์สารต้านอนุมูลอิสระธรรมชาติ [ 1 ] มันเป็นที่รู้จักกันดีว่าเครื่องเทศมากที่สุดมีความหลากหลายของกิจกรรมทางชีวภาพและทางเภสัชวิทยา

หญ้าถอดปล้อง ( ไนเจลลา sativa L . ) ครอบครัว ranunculaceae เป็นเครื่องเทศที่มีการใช้มานานหลายทศวรรษ ทั้งอาหาร และ ยาการวิจัย มันยังใช้เป็นการเยียวยาธรรมชาติสำหรับโรคหอบหืด , ความดันโลหิตสูง , เบาหวาน , การอักเสบ , อาการไอ , หลอดลมอักเสบ , ปวดหัว , กลาก , ไข้ , เวียนหัว , และไข้หวัดใหญ่ [ 2 ] เมล็ดพันธุ์ที่เป็นที่รู้จักกันเป็นยากระตุ้น ขับลม และขับปัสสาวะ , [ 3 ]น้ำมันหอมระเหยจากเมล็ดของพืชต้นไม้นี้ถูกพบว่ามีความเข้มข้นสูงของ thymoquinone สารประกอบ เช่น ไทมอล และบริษัทที่เกี่ยวข้อง และ dithymoquinone ซึ่งถูกพาดพิงในการป้องกันการอักเสบ [ 4 ] , [ 5 ] กิจกรรมของสารต้านอนุมูลอิสระ เช่นระงับปฏิกิริยาชนิดออกซิเจน ฤทธิ์ต้านจุลชีพ [ 6 ] และ [ กิจกรรม และการ antiulcer

2 ]
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: