As opposed to pulsed radar systems, continuous wave (CW) radar systems emit electromagnetic radiation at all times. Conventional CW radar cannot measure range because there is no basis for the measurement of the time delay. Recall that the basic radar system created pulses and used the time interval between transmission and reception to determine the target's range. If the energy is transmitted continuously then this will not be possible.
CW radar can measure the instantaneous rate-of-change in the target's range. This is accomplished by a direct measurement of the Doppler shift of the returned signal. The Doppler shift is a change in the frequency of the electromagnetic wave caused by motion of the transmitter, target or both. For example, if the transmitter is moving, the wavelength is reduced by a fraction proportional to the speed it is moving in the direction of propagation. Since the speed of propagation is a constant, the frequency must increase as the wavelength shortens. The net result is an upwards shift in the transmitted frequency, called the Doppler shift.