The history of set theory is rather different from the history of most other areas of mathematics. For most areas a long process can usually be traced in which ideas evolve until an ultimate flash of inspiration, often by a number of mathematicians almost simultaneously, produces a discovery of major importance.
Set theory however is rather different. It is the creation of one person, Georg Cantor. Before we take up the main story of Cantor's development of the theory, we first examine some early contributions.
The idea of infinity had been the subject of deep thought from the time of the Greeks. Zeno of Elea, in around 450 BC, with his problems on the infinite, made an early major contribution. By the Middle Ages discussion of the infinite had led to comparison of infinite sets. For example Albert of Saxony, in Questiones subtilissime in libros de celo et mundi, proves that a beam of infinite length has the same volume as 3-space. He proves this by sawing the beam into imaginary pieces which he then assembles into successive concentric shells which fill space.
Bolzano was a philosopher and mathematician of great depth of thought. In 1847 he considered sets with the following definition
an embodiment of the idea or concept which we conceive when we regard the arrangement of its parts as a matter of indifference.
Bolzano defended the concept of an infinite set. At this time many believed that infinite sets could not exist. Bolzano gave examples to show that, unlike for finite sets, the elements of an infinite set could be put in 1-1 correspondence with elements of one of its proper subsets. This idea eventually came to be used in the definition of a finite set.
It was with Cantor's work however that set theory came to be put on a proper mathematical basis. Cantor's early work was in number theory and he published a number of articles on this topic between 1867 and 1871. These, although of high quality, give no indication that they were written by a man about to change the whole course of mathematics.
An event of major importance occurred in 1872 when Cantor made a trip to Switzerland. There Cantor met Richard Dedekind and a friendship grew up that was to last for many years. Numerous letters between the two in the years 1873-1879 are preserved and although these discuss relatively little mathematics it is clear that Dedekind's deep abstract logical way of thinking was a major influence on Cantor as his ideas developed.
Cantor moved from number theory to papers on trigonometric series. These papers contain Cantor's first ideas on set theory and also important results on irrational numbers. Dedekind was working independently on irrational numbers and Dedekind published Continuity and irrational numbers.
In 1874 Cantor published an article in Crelle's Journal which marks the birth of set theory. A follow-up paper was submitted by Cantor to Crelle's Journal in 1878 but already set theory was becoming the centre of controversy. Kronecker, who was on the editorial staff of Crelle's Journal, was unhappy about the revolutionary new ideas contained in Cantor's paper. Cantor was tempted to withdraw the paper but Dedekind persuaded Cantor not to withdraw it and Weierstrass supported publication. The paper was published but Cantor never submitted any further work to Crelle's Journal.
In his 1874 paper Cantor considers at least two different kinds of infinity. Before this orders of infinity did not exist but all infinite collections were considered 'the same size'. However Cantor examines the set of algebraic real numbers, that is the set of all real roots of equations of the form