3.3. Partial coalescence of fat of whipped creamsThe effect of cold st การแปล - 3.3. Partial coalescence of fat of whipped creamsThe effect of cold st ไทย วิธีการพูด

3.3. Partial coalescence of fat of

3.3. Partial coalescence of fat of whipped creams
The effect of cold storages or spray drying on the partial fat
coalescence of whipped cream during whipping was shown in
Fig. 4a. Before whipping, there was no significant difference
(p > 0.05) between FWC and CWC in partial coalescence of fat, but
both were significantly lower than PWC, which was in agreement
with the results of average particle size and micrograph (Fig. 2).
Such a positive correlation between the average particle size and
partial coalescence of fat in whipped cream was also reported in our
previous study (Zhao et al., 2013). Partial coalescence of fat in all
samples increased with whipping time although the increasing
rates differed. After whipping for 3 min, the increasing rates of CWC
and FWC raised sharply till the 6th min, whereas, the increasing
rate for PWC was generally steady and relatively lower (a flatter
plot of partial coalescence vs whipping time), indicating that spray
drying might induce the development of partial coalescence in
different way from cold storages. During whipping, fat droplets of
CWC obviously coalesced partially faster than those of FWC after
3 min whipping, and reached the same degree of partial coalescence
as PWC at the 4th min (even though the initial partial coalescence
in CWC was almost half of that in PWC). After whipping for
5 min, partial coalescence of fat was in a descending order
(CWC > FWC > PWC), ranged from 45.39 ± 1.26% to 28.97 ± 1.42%.
The results suggested that the processing conditions could influence
the development of network of partially coalesced fat
considerably.
Storing at 4 C could be considered as an aging process, which
accounted for subsequent desorption of protein in emulsion (Goff,
1997). Because the interactions between proteins and low molecular
weight surfactants at interface continued, thereby rearrangement
of fat membrane in emulsion occurred during aging (Barford,
Krog, Larsen, & Buchheim, 1991). Gelin, Poyen, Courthaudon, Le
Meste, and Lorient (1994) reported that the concentration of
unadsorbed protein increased steadily during aging, which was
also observed in this study. PWC had the highest surface protein
concentration, followed by FWC and CWC during whipping (data
no shown). A decrease in surface protein concentration was reported
to reduce the stability of fat droplet against partial coalescence
during whipping, because of the reduction of protein steric
stabilization (Bolliger, Goff, & Tharp, 2000). Therefore, it is understandable
that the partial fat coalescence of CWC was higher than
that of FWC. Sliwinski et al. (2003) concluded that spray drying and
reconstitution would not cause large increase of adsorbed protein
load. However, increase of particle size of PWC led to reduction of
the specific surface area, thereby increasing surface protein concentration.
Hence, for PWC, the slower increase of partial coalescence
could be attributed to the dense adsorption layer that had
restrained the coalescence of semi-solid fat droplets.
3.4. Creep characteristics of whipped creams
Creep curves for samples during 5 min of whipping are shown in
Fig. 5. The slope of curves trended to remain constant at the late
stage (after ~100 s), indicating equilibrium deformation was achieved.
The strain of FWC was larger than that of CWC, while PWC
exhibited a remarkable increase in strain. The parameters of Burgers
model were given in Table 2. Samples were properly described
by Burgers model. Similar descending order (PWC > FWC > CWC)
was also presented in mean retardation time (l) and creep
compliance (Je). However, yield stress (t0) was found to be in a
reverse order. The yield stress of PWC (41.65 ± 1.03 Pa) was
significantly (p < 0.05) smaller than that of FWC (88.25 ± 1.30 Pa),
while CWC exhibited the highest yield stress (168.50 ± 2.26 Pa).
Materials with higher apparent viscosity formed stronger bonds
between structure units. There is a positive relationship between
the yield stress and apparent viscosity (data not shown), both of
which are indicative of the flowability. The extent of equilibrium
elastic deformation provides insight as to the structure strength.
Materials possess high compliance have weak structure whereas
low compliance represents strong or stiff structure (Sozer, 2009).
Retardation time is related to the ease a material adapt to an
applied load (Foegeding, Brown, Drake, & Daubert, 2003), which
reflects the resistance to permanent deformation under long term
loading, shorter retardation time means better shape-preserving.
Creep analysis confirmed the results of partial coalescence of fat
of whipping cream, which could be used to characterize elastic
strength of the bonds constructing the network structure. As strong
structure had greater resistance to deformation than weak structure,
higher partial coalescence of fat meant stronger threedimensional
network structure, indicating better stability of
whipped cream.
3.5. Overrun of whipped creams
Fig. 4b presents the different changing pattern of the overrun
with whipping time. During whipping, the overrun for both FWC
and CWC increased significantly faster (p < 0.05) than PWC. The
peak overrun at the 5th min was found for CWC, while FWC had
higher overrun than CWC after 6 min whipping. These interesting
overrun changing tendencies were different from those of fat partial
coalescence at the late stage of whipping (Fig. 4a). These results
suggest that partial coalescence of fat was the major but not the
exclusive factor that influenced the overrun of whipped cream.
As reported in our previous study, surface protein is inversely
proportional to the overrun (Zhao et al., 2013), because the airewater
interface stabilized by the serum proteins is required for
aeration and stable foam stability (Zhang & Goff, 2004). In addition,
an increase in viscosity of unwhipped cream can cause elevated
whipping time and reduced overrun (Camacho, MartınezNavarrete,
& Chiralt, 1998), due to increasing resistance to shear
during whipping. Therefore, the overrun of PWC was expected to
increased slowly. Moreover, higher partial coalescence of fat results
in higher overrun, as a result of increasing air trapping efficiency.
However, overwhipping of whipped cream resulted in irreversible
clumping of fat droplets, which caused some degree of disruption
of the foam structure with loss of air volume (Allen, Dickinson, &
Murray, 2006). It may explain the increase in overrun of CWC after
5 min whipping.
4. Conclusion
It has been demonstrated the importance of selecting a proper
treatment/process to extend the shelf-life of the emulsion for
whipped cream. The storage temperatures i.e. 18 or 4 C for
emulsion led to substantial changes in partial coalescence of fat and
significant difference in overrun of whipped cream. Fat droplets of
chilled emulsion coalesced partially greater and faster than those of
frozen emulsion, evidenced by results of average particle size,
apparent viscosity, yield stress, creep compliance and overrun.
It is feasible to produce powdered whipped cream by spray
drying, although the current spray drying process (compared to the
chill and freezing storages) decreased the emulsion stability,
whipping properties and foam stability of the resultant whipped
cream. Considering the advantages on storage space, transportation
and handling convenience, energy savings and environmental
sustainability, spray drying process could represent a potential
alternative of commercial interest. However, the formulation for
emulsion including the selection of emulsifier and encapsulant as
well as the spray drying process for producing powdered whipped
cream still require optimization. Preventing undesirable loss in the
surface activity and achieving similar or comparable particle size
distribution to parent emulsion for conveniently reconstituted
emulsion could be the immediate measurements for future
optimization.
Acknowledgments
The authors would like to thank the National Natural Science
Foundation of China (No. 20806030) and the Fundamental
Research Funds for the Central Universities (2013ZZ0076) for the
financial support.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
3.3. บางส่วน coalescence ของไขมันครีมที่ถูกตีผลของ storages ตะกรเย็นหรือพ่นแห้งบนไขมันบางส่วนcoalescence ของครีมที่ถูกตีในระหว่าง whipping ที่แสดงในFig. 4a ก่อน whipping มีไม่แตกต่างอย่างมีนัยสำคัญ(p > 0.05) ระหว่าง FWC ผู้ใน coalescence บางส่วนของไขมัน แต่ทั้งสองได้อย่างมีนัยสำคัญต่ำกว่า PWC ซึ่งตกลงผลของขนาดอนุภาคเฉลี่ย micrograph (Fig. 2)เช่นบวกความสัมพันธ์ระหว่างขนาดอนุภาคเฉลี่ย และยังรายงาน coalescence บางส่วนของไขมันในครีมที่ถูกตีในของเราก่อนหน้านี้ศึกษา (เจียว et al., 2013) Coalescence บางส่วนของไขมันทั้งหมดตัวอย่างเพิ่ม ด้วย whipping เวลาแม้ว่าจะเพิ่มขึ้นราคาแตกต่างกัน หลังจาก whipping สำหรับ 3 นาที อัตราการเพิ่มขึ้นของผู้และ FWC ที่เพิ่มขึ้นอย่างรวดเร็วจนถึงต่ำสุด 6 ขณะที่ เพิ่มขึ้นอัตราสำหรับ PWC ทั่วไปแทบไม่มี และค่อนข้างต่ำ (การเลียแข้งเลียขาสเปรย์ที่แสดงพล็อตของ vs coalescence บางส่วน whipping เวลา),แห้งอาจก่อให้เกิดการพัฒนาของ coalescence บางส่วนในวิธีที่แตกต่างจากเย็น storages ตะกร ระหว่าง whipping ไขมันหยดของผู้ชัด coalesced บางส่วนได้เร็วกว่าของ FWC หลัง3 นาที whipping และถึง coalescence บางส่วนในระดับเดียวกันเป็น PWC ที่นาที 4 (แม้ coalescence บางส่วนเริ่มต้นในผู้ได้เกือบครึ่งหนึ่งของที่ PWC) หลังจาก whipping สำหรับ5 นาที coalescence ของไขมันบางส่วนถูกเรียงลำดับ(ผู้ > FWC > PWC), แสก ๆ จาก 45.39 ± 1.26% 28.97 ± 1.42%ผลแนะนำว่า เงื่อนไขการประมวลผลอาจมีอิทธิพลต่อการพัฒนาเครือข่ายของไขมันบางส่วน coalescedมากอาจพิจารณาจัดเก็บที่ 4 C เป็นกระบวนการอายุ ซึ่งคิด desorption ต่อโปรตีนในอิมัลชัน (กอฟฟ์1997) เนื่องจากการโต้ตอบระหว่างโปรตีนและโมเลกุลต่ำน้ำหนัก surfactants ที่อินเตอร์เฟซยังคง จึง rearrangementของเมมเบรนไขมันในอิมัลชันที่เกิดขึ้นระหว่างอายุ (BarfordKrog, Larsen, & Buchheim, 1991) ดูเกลินปู Poyen, Courthaudon เลอMeste และ Lorient (1994) รายงานว่า ความเข้มข้นของโปรตีนที่เพิ่มขึ้นอย่างต่อเนื่องในระหว่างอายุ ที่ unadsorbedนอกจากนี้ยัง พบในการศึกษานี้ PWC ได้โปรตีนผิวสูงสุดความเข้มข้น ตามด้วย FWC ผู้ระหว่าง whipping (ข้อมูลไม่มีปรากฏ) รายงานการลดลงในความเข้มข้นของโปรตีนผิวการลดเสถียรภาพของหยดไขมันกับ coalescence บางส่วนระหว่าง whipping ลดโปรตีน stericเสถียรภาพ (Bolliger กอฟฟ์ & Tharp, 2000) ดังนั้น จึงเข้าใจว่า coalescence ไขมันบางส่วนของผู้สูงกว่าที่ FWC Sliwinski et al. (2003) สรุปว่า สเปรย์แห้ง และreconstitution ไม่ทำให้ใหญ่เพิ่มโปรตีน adsorbedโหลด อย่างไรก็ตาม เพิ่มของขนาดอนุภาคของ PWC ที่นำไปสู่การลดเฉพาะพื้นที่ผิว เพิ่มความเข้มข้นของโปรตีนผิวจึงดังนั้น สำหรับ PWC, coalescence บางส่วนเพิ่มช้าลงอาจเกิดจากชั้นดูดซับหนาแน่นที่มีทรง coalescence ของหยดไขมันกึ่งแข็ง3.4 การคืบลักษณะของครีมที่ถูกตีแสดงเส้นโค้งการคืบตัวอย่างในช่วง 5 นาทีของ whippingFig. 5 ความชันของเส้นโค้ง trended คงที่เอขั้น (หลัง ~ 100 s), ระบุสมดุลแมพสำเร็จสายพันธุ์ของ FWC ใหญ่กว่าของผู้ ในขณะที่ PWCจัดแสดงเพิ่มขึ้นโดดเด่นในต้องใช้ พารามิเตอร์ของเบอร์เกอร์รูปแบบถูกกำหนดในตารางที่ 2 ตัวอย่างที่ได้อธิบายไว้อย่างถูกต้องโดยแบบจำลองเบอร์เกอร์ คล้ายกันเรียงลำดับ (PWC > FWC > ผู้)นอกจากนี้ยังมีการนำเสนอในเวลาชะลอ (l) และ คืบปฏิบัติตามกฎระเบียบ (เจ) อย่างไรก็ตาม พบความเครียดผลผลิต (t0) ต้องการกลับลำดับ ความเครียดผลผลิตของ PWC (41.65 ± 1.03 ป่า) ได้อย่างมีนัยสำคัญ (p < 0.05) มีขนาดเล็กกว่าของ FWC (88.25 ± 1.30 ป่า),ในขณะที่ผู้จัดแสดงความเครียดผลตอบแทนสูงสุด (168.50 ± 2.26 ป่า)วัสดุที่ มีความหนืดสูงที่ชัดเจนรูปแบบพันธบัตรที่แข็งแกร่งระหว่างโครงสร้างหน่วยการ มีความสัมพันธ์ในเชิงบวกระหว่างความเครียดผลผลิตและความหนืดปรากฏ (ข้อมูลไม่แสดง), ทั้งสองซึ่งเป็นการส่อ flowability ที่ ขอบเขตของสมดุลแมพที่ยืดหยุ่นช่วยให้เข้าใจเพื่อความแข็งแรงของโครงสร้างวัสดุมีราคาสูงปฏิบัติตามกฎระเบียบมีโครงสร้างอ่อนแอในขณะที่ปฏิบัติตามกฎระเบียบที่ต่ำแสดงถึงโครงสร้างแข็งแรง หรือแข็ง (Sozer, 2009)เวลาชะลอการเกี่ยวข้องกับวัสดุปรับให้เข้ากับความสะดวกในการ(Foegeding สีน้ำตาล เดรก & Daubert, 2003), ใช้โหลดซึ่งสะท้อนให้เห็นถึงความต้านทานการแมพถาวรภายใต้ระยะยาวสั้นลง ลดเวลาชะลอความ ดี ทรงรักษาวิเคราะห์คืบยืนยันผลลัพธ์ของ coalescence บางส่วนของไขมันของ whipping ครีม ซึ่งสามารถใช้กำหนดลักษณะยืดหยุ่นความแข็งแรงของโครงสร้างเครือข่ายในการสร้างความผูกพัน แข็งแกร่งโครงสร้างมีความต้านทานมากกว่าการแมพกว่าโครงสร้างอ่อนแอcoalescence บางส่วนสูงไขมันหมายถึง threedimensional ที่แข็งแกร่งโครงสร้างเครือข่าย การบ่งชี้ความมั่นคงที่ดีกว่าของถูกตีครีม3.5 การเกินของครีมที่ถูกตีFig. 4b นำเสนอรูปแบบเปลี่ยนแปลงแตกต่างกันของมากเกินไปด้วย whipping ครั้ง ระหว่าง whipping มากเกินไปสำหรับทั้ง FWCและผู้เพิ่มเร็วขึ้นอย่างมีนัยสำคัญ (p < 0.05) กว่า PWC ที่สูงสุดเกินที่นาที 5 พบสำหรับผู้ ขณะมี FWCมากเกินไปสูงกว่าผู้หลัง whipping 6 นาที เหล่านี้น่าสนใจแนวโน้มเปลี่ยนแปลงมากเกินไปได้แตกต่างจากไขมันบางส่วนcoalescence ในระยะปลายของ whipping (Fig. 4a) ผลลัพธ์เหล่านี้แนะนำว่า coalescence บางส่วนของไขมันมีหลักการ แต่ไม่ยังตัวคูณร่วมที่มีอิทธิพลต่อมากเกินไปของครีมที่ถูกตีรายงานในการศึกษาก่อนหน้านี้ของเรา โปรตีนผิวเป็น inverselyสัดส่วนการเกิน (เจียว et al., 2013), เนื่องจากการ airewaterอินเทอร์เฟซที่เสถียร โดยโปรตีนเซรั่มจะต้องaeration และคอกโฟมเสถียรภาพ (เตียวและกอฟฟ์ 2004) นอกจากนี้การเพิ่มความหนืดของครีม unwhipped สามารถทำให้เกิดการยกระดับwhipping เวลา และลดลงมากเกินไป (Camacho, MartınezNavarrete& Chiralt, 1998), ครบกำหนดเพื่อเพิ่มความต้านทานต่อแรงเฉือนระหว่าง whipping ดังนั้น มากเกินไปของ PWC ถูกต้องเพิ่มขึ้นอย่างช้า ๆ นอกจากนี้ ผล coalescence สูงบางส่วนของไขมันในสูงเกิน เป็นผลมาจากประสิทธิภาพในการดักอากาศเพิ่มขึ้นอย่างไรก็ตาม overwhipping ของครีมที่ถูกตีให้ให้clumping ของหยดไขมัน ซึ่งเกิดจากบางส่วนของทรัพยโครงสร้างโฟมกับการสูญเสียของปริมาตรอากาศ (อัลเลน สัน และเมอร์เรย์ 2006) มันอาจอธิบายเพิ่มมากเกินไปของผู้ที่หลังจากwhipping 5 นาที4. บทสรุปมีการแสดงความสำคัญของการเลือกเหมาะสมรักษา/กระบวนการยืดอายุเก็บรักษาของอิมัลชันสำหรับถูกตีครีม การเก็บในอุณหภูมิเช่น 18 หรือ 4 C สำหรับอิมัลชันนำไปสู่การเปลี่ยนแปลงที่พบใน coalescence บางส่วนของไขมัน และความแตกต่างอย่างมีนัยสำคัญในมากเกินไปของครีมที่ถูกตี หยดไขมันของอิมัลชันเย็น coalesced บางส่วนมากกว่า และเร็วกว่าของอิมัลชันแช่แข็ง เป็นหลักฐาน โดยผลของขนาดอนุภาคเฉลี่ยความหนืดปรากฏ ความเครียดผลผลิต ปฏิบัติตามคืบ และมากเกินไปจึงเป็นไปได้ในการผลิตครีมได้พัดเอาผง โดยสเปรย์แห้ง ถึงแม้ว่าปัจจุบันสเปรย์กระบวนการอบแห้ง (เมื่อเทียบกับการเย็นและ storages ตะกรเย็นช่ำ) ลดเสถียรภาพของอิมัลชันคุณสมบัติ whipping และเสถียรภาพโฟม resultant ถูกตีครีม พิจารณาข้อได้เปรียบในพื้นที่การจัดเก็บ ขนส่งและจัดการสะดวก ประหยัดพลังงาน และสิ่งแวดล้อมความยั่งยืน กระบวนการอบแห้งสเปรย์สามารถแสดงศักยภาพทางเลือกที่น่าสนใจทางการค้า อย่างไรก็ตาม กำหนดสำหรับรวมทั้งการเลือกของอิมัลซิ encapsulant เป็นอิมัลชันเป็นสเปรย์ได้พัดเอากระบวนการในการผลิตผงแห้งดีนอกจากนี้ครีมยังต้องปรับให้เหมาะสม ป้องกันการสูญเสียผลในการกิจกรรมที่พื้นผิวและการบรรลุขนาดอนุภาคคล้ายคลึงกัน หรือเทียบเท่ากระจายไปยังหลักอิมัลชันสำหรับเชิญ reconstitutedอิมัลชันอาจประเมินทันทีสำหรับอนาคตเพิ่มประสิทธิภาพการตอบผู้เขียนอยากขอขอบคุณศาสตร์ธรรมชาติแห่งชาติมูลนิธิจีน (หมายเลข 20806030) และขั้นพื้นฐานวิจัยทุนสำหรับมหาวิทยาลัยกลาง (2013ZZ0076) สำหรับการสนับสนุนทางการเงิน
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
3.3 การเชื่อมต่อกันของไขมันบางส่วนของวิปปิ้งครีมผลของการเก็บรักษาเย็นหรือแห้งแบบพ่นฝอยในไขมันบางส่วนการเชื่อมต่อกันของวิปปิ้งครีมวิปปิ้งในระหว่างถูกนำมาแสดงในรูปที่ 4a ก่อนที่วิปปิ้งไม่มีความแตกต่างกัน(p> 0.05) ระหว่าง FWC CWC และการเชื่อมต่อกันในบางส่วนของไขมัน แต่ทั้งสองอย่างมีนัยสำคัญต่ำกว่าPWC ซึ่งอยู่ในข้อตกลงที่มีผลของขนาดอนุภาคเฉลี่ยและmicrograph (รูปที่. 2) ดังกล่าวมีความสัมพันธ์เชิงบวกระหว่างขนาดอนุภาคเฉลี่ยและการเชื่อมต่อกันบางส่วนของไขมันในวิปปิ้งครีมมีรายงานของเรายังอยู่ในการศึกษาก่อนหน้า(Zhao et al., 2013) การเชื่อมต่อกันบางส่วนของไขมันในทุกตัวอย่างมีเวลาเพิ่มขึ้นวิปปิ้งแม้ว่าการเพิ่มอัตราการแตกต่างกัน หลังจากที่วิปปิ้งเป็นเวลา 3 นาทีอัตราการเพิ่มขึ้นของ CWC และ FWC ยกขึ้นอย่างรวดเร็วจนถึงนาทีที่ 6 ในขณะที่การเพิ่มขึ้นของอัตราPWC โดยทั่วไปมั่นคงและค่อนข้างต่ำ (กยพล็อตของการเชื่อมต่อกันบางส่วนครับเวลาที่วิปปิ้ง) แสดงให้เห็นว่าสเปรย์การอบแห้งอาจก่อให้เกิดการพัฒนาของการเชื่อมต่อกันบางส่วนในวิธีที่แตกต่างจากห้องเย็น ในระหว่างการตีหยดไขมันCWC เห็นได้ชัดรวมตัวกันบางส่วนได้เร็วขึ้นกว่า FWC หลังจาก3 นาทีวิปปิ้งและไปถึงการศึกษาระดับปริญญาเดียวกันของการเชื่อมต่อกันบางส่วนเป็นPWC ในนาทีที่ 4 (แม้ว่าการเชื่อมต่อกันบางส่วนเริ่มต้นในCWC เป็นเกือบครึ่งหนึ่งของที่อยู่ใน PWC ) หลังจากที่วิปปิ้งสำหรับ5 นาที, การเชื่อมต่อกันบางส่วนของไขมันในการสั่งซื้อมากไปหาน้อย(CWC> FWC> PWC) ตั้งแต่ 45.39 ± 1.26% มาอยู่ที่ 28.97 ± 1.42%. ผลการศึกษาพบว่าสภาพการประมวลผลอาจมีผลต่อการพัฒนาเครือข่ายของบางส่วนรวมตัวกันที่มีไขมันมาก. การจัดเก็บที่อุณหภูมิ 4 องศาเซลเซียสจะได้รับการพิจารณาเป็นกระบวนการริ้วรอยซึ่งคิดเป็นคายที่ตามมาของโปรตีนในน้ำนม(กอฟฟ์1997) เพราะการมีปฏิสัมพันธ์ระหว่างโปรตีนและโมเลกุลต่ำลดแรงตึงผิวน้ำหนักที่เชื่อมต่ออย่างต่อเนื่องดังนั้นการปรับปรุงใหม่ของเมมเบรนไขมันในอิมัลชันเกิดขึ้นในช่วงริ้วรอย(Barford, Krog เสนและ Buchheim, 1991) Gelin, Poyen, Courthaudon เลอMeste และลอริยองต์ (1994) รายงานว่าความเข้มข้นของโปรตีนunadsorbed เพิ่มขึ้นเรื่อย ๆ ในช่วงอายุซึ่งยังพบในการศึกษานี้ PWC มีโปรตีนสูงที่สุดบนพื้นผิวเข้มข้นตามด้วยFWC และ CWC ระหว่างวิปปิ้ง (ข้อมูลที่แสดงให้เห็นว่าไม่มี) การลดลงของพื้นผิวโปรตีนเข้มข้นได้รับการรายงานเพื่อลดความมั่นคงของหยดไขมันกับการเชื่อมต่อกันบางส่วนในระหว่างการตีเนื่องจากการลดลงของโปรตีนsteric เสถียรภาพ (Bolliger, กอฟฟ์และ Tharp, 2000) ดังนั้นจึงเป็นที่เข้าใจว่าการเชื่อมต่อกันของไขมันบางส่วน CWC สูงกว่าที่FWC Sliwinski et al, (2003) ได้ข้อสรุปว่าสเปรย์แห้งและปฏิสังขรณ์จะไม่ก่อให้เกิดการเพิ่มขึ้นมากของโปรตีนดูดซับโหลด อย่างไรก็ตามการเพิ่มขึ้นของขนาดอนุภาคของ PWC นำไปสู่การลดลงของพื้นที่ผิวเฉพาะดังนั้นความเข้มข้นของโปรตีนผิวที่เพิ่มขึ้น. ดังนั้นสำหรับ PWC ที่เพิ่มขึ้นช้าลงของการเชื่อมต่อกันบางส่วนอาจจะประกอบไปชั้นดูดซับความหนาแน่นที่ยับยั้งการเชื่อมต่อกันของกึ่งหยดไขมันที่เป็นของแข็ง. 3.4 ลักษณะการคืบของวิปปิ้งครีมคืบโค้งสำหรับตัวอย่างในช่วง 5 นาทีของวิปปิ้งจะแสดงในรูปที่ 5. ความชันของเส้นโค้งที่มีแนวโน้มที่จะยังคงคงที่ปลายเวที(หลังจาก ~ 100 s), แสดงให้เห็นความผิดปกติสมดุลก็ประสบความสำเร็จ. สายพันธุ์ของ FWC เป็นขนาดใหญ่กว่าของ CWC ขณะ PWC แสดงเพิ่มขึ้นโดดเด่นในสายพันธุ์ พารามิเตอร์ของเบอร์เกอร์รูปแบบที่ได้รับในตารางที่ 2 ตัวอย่างที่อธิบายไว้อย่างถูกต้องโดยเบอร์เกอร์รูปแบบ เรียงลำดับที่คล้ายกัน (PWC> FWC> CWC) ที่ถูกนำเสนอในเวลาหมายถึงการชะลอ (ลิตร) และคืบปฏิบัติตาม(เจ๊) แต่ความเครียดผลผลิต (t0) พบว่าจะอยู่ในลำดับที่กลับ ความเครียดผลผลิตของ PWC (41.65 ± 1.03 ป่า) เป็นอย่างมีนัยสำคัญ(p <0.05) ที่มีขนาดเล็กกว่าของ FWC (88.25 ± 1.30 ป่า) ในขณะที่ CWC แสดงผลผลิตสูงสุดความเครียด (168.50 ± 2.26 Pa.) วัสดุที่มีความหนืดที่เห็นได้ชัดที่สูงขึ้นเกิดขึ้น พันธบัตรที่แข็งแกร่งระหว่างหน่วยโครงสร้าง มีความสัมพันธ์เชิงบวกระหว่างเป็นความเครียดผลผลิตและความหนืดที่เห็นได้ชัด (ไม่ได้แสดงข้อมูล) ซึ่งทั้งสองซึ่งเป็นตัวบ่งชี้ของการไหล ขอบเขตของความสมดุลเสียรูปยืดหยุ่นให้ข้อมูลเชิงลึกที่จะมีความแข็งแรงโครงสร้าง. วัสดุมีการปฏิบัติตามสูงมีโครงสร้างที่อ่อนแอในขณะที่การปฏิบัติตามต่ำแสดงให้เห็นถึงโครงสร้างที่แข็งแกร่งหรือแข็ง (Sozer 2009). เวลาสมองที่เกี่ยวข้องกับความสะดวกในวัสดุที่ปรับตัวเข้ากับโหลดที่ใช้ ( Foegeding, น้ำตาล, เป็ดและเบิร์ท, 2003) ซึ่งสะท้อนให้เห็นถึงความต้านทานต่อการเสียรูปถาวรภายใต้ระยะยาวโหลดเวลาการชะลอสั้นหมายถึงรูปร่างการรักษาที่ดีกว่า. วิเคราะห์คืบยืนยันผลของการเชื่อมต่อกันบางส่วนของไขมันของวิปปิ้งครีมซึ่งอาจจะเป็นที่ใช้ในการอธิบายลักษณะยืดหยุ่นความแข็งแรงของพันธบัตรสร้างโครงสร้างเครือข่าย เป็นที่แข็งแกร่งโครงสร้างมีความต้านทานมากขึ้นต่อการเปลี่ยนรูปกว่าโครงสร้างที่อ่อนแอ, การเชื่อมต่อกันสูงขึ้นบางส่วนของไขมันหมายแข็งแกร่ง threedimensional โครงสร้างเครือข่ายแสดงให้เห็นความมีเสถียรภาพที่ดีขึ้นของวิปปิ้งครีม. 3.5 เหยียบย่ำวิปปิ้งครีมรูป 4b นำเสนอรูปแบบการเปลี่ยนแปลงที่แตกต่างกันของการบุกรุกด้วยเวลาวิปปิ้ง ในระหว่างการตี, การบุกรุกทั้ง FWC และ CWC เพิ่มขึ้นอย่างมีนัยสำคัญได้เร็วขึ้น (p <0.05) มากกว่า PWC สูงสุดบุกรุกที่ 5 นาทีก็พบว่าสำหรับ CWC ขณะ FWC มีการใช้จ่ายเกินที่สูงกว่าCWC หลัง 6 นาทีวิปปิ้ง ที่น่าสนใจเหล่านี้แนวโน้มการเปลี่ยนแปลงการใช้จ่ายเกินได้แตกต่างจากไขมันบางส่วนเชื่อมต่อกันในระยะปลายของวิปปิ้ง(รูป. 4a) ผลการศึกษานี้ชี้ให้เห็นว่าการเชื่อมต่อกันบางส่วนของไขมันเป็นหลักแต่ไม่ได้เป็นปัจจัยเดียวที่มีอิทธิพลต่อการบุกรุกของวิปปิ้งครีม. ตามที่ได้รายงานในการศึกษาก่อนหน้านี้โปรตีนผิวผกผันสัดส่วนบุกรุก (Zhao et al., 2013) เพราะ airewater อินเตอร์เฟซที่มีเสถียรภาพโดยโปรตีนซีรั่มเป็นสิ่งจำเป็นสำหรับการเติมอากาศและความมั่นคงโฟมที่มีเสถียรภาพ (Zhang และกอฟฟ์, 2004) นอกจากนี้การเพิ่มขึ้นของความหนืดของครีม unwhipped อาจทำให้เกิดการยกระดับเวลาวิปปิ้งและลดการใช้จ่ายเกิน(กาMartınezNavarrete, และ Chiralt, 1998) เนื่องจากการเพิ่มความต้านทานต่อการเฉือนระหว่างวิปปิ้ง ดังนั้นการใช้จ่ายเกินของ PWC ที่คาดว่าจะเพิ่มขึ้นอย่างช้าๆ นอกจากนี้ยังมีการเชื่อมต่อกันบางส่วนที่สูงขึ้นของผลไขมันในการใช้จ่ายเกินที่สูงขึ้นเป็นผลจากการเพิ่มประสิทธิภาพในการดักอากาศ. อย่างไรก็ตาม overwhipping ของวิปปิ้งครีมผลในการกลับไม่จับตัวเป็นก้อนของหยดไขมันที่ก่อให้เกิดระดับหนึ่งของการหยุดชะงักของโครงสร้างโฟมที่มีการสูญเสียของปริมาณอากาศ(อัลเลนดิกคินสันและเมอเรย์, 2006) มันอาจอธิบายได้ว่าการเพิ่มขึ้นของการใช้จ่ายเกินของ CWC หลังจาก5 นาทีวิปปิ้ง. 4 สรุปมันได้รับการแสดงให้เห็นถึงความสำคัญของการเลือกที่เหมาะสมการรักษา/ กระบวนการที่จะขยายอายุการเก็บรักษาของอิมัลชันสำหรับวิปปิ้งครีม อุณหภูมิการจัดเก็บคือ? 18 หรือ 4 องศาเซลเซียสเป็นเวลาอิมัลชันนำไปสู่การเปลี่ยนแปลงที่สำคัญในการเชื่อมต่อกันบางส่วนของไขมันและความแตกต่างอย่างมีนัยสำคัญในการใช้จ่ายเกินของวิปปิ้งครีม หยดไขมันของอิมัลชันแช่เย็นรวมตัวกันบางส่วนมากขึ้นและเร็วขึ้นกว่าของอิมัลชันแช่แข็งหลักฐานโดยผลของขนาดอนุภาคเฉลี่ยความหนืดชัดเจนความเครียดผลผลิตตามคืบและย่ำยี. เป็นไปได้ในการผลิตผงวิปปิ้งครีมสเปรย์แห้งแม้ว่าปัจจุบันสเปรย์กระบวนการอบแห้ง (เมื่อเทียบกับความเย็นและการเก็บรักษาการแช่แข็ง) ลดลงเสถียรภาพอิมัลชัน, วิปปิ้งคุณสมบัติและความมั่นคงของโฟมวิปปิ้งผลครีม พิจารณาข้อดีในพื้นที่จัดเก็บ, การขนส่งและความสะดวกสบายในการจัดการ, การประหยัดพลังงานและสิ่งแวดล้อมอย่างยั่งยืนกระบวนการอบแห้งสเปรย์จะเป็นตัวแทนที่มีศักยภาพทางเลือกที่น่าสนใจในเชิงพาณิชย์ แต่สูตรสำหรับอิมัลชันรวมถึงการเลือกของอิมัลชันและ encapsulant เป็นเดียวกับกระบวนการอบแห้งสเปรย์สำหรับการผลิตผงวิปปิ้งครีมยังคงต้องการเพิ่มประสิทธิภาพ ป้องกันการสูญเสียที่ไม่พึงประสงค์ในกิจกรรมพื้นผิวและประสบความสำเร็จขนาดอนุภาคที่คล้ายกันหรือเทียบได้กระจายไปยังผู้ปกครองอิมัลชันสำหรับสร้างสิ่งอำนวยความสะดวกอิมัลชันอาจจะวัดได้ทันทีสำหรับอนาคตการเพิ่มประสิทธิภาพ. กิตติกรรมประกาศผู้เขียนอยากจะขอขอบคุณวิทยาศาสตร์ธรรมชาติแห่งชาติมูลนิธิจีน(ฉบับที่ 20806030) และพื้นฐานกองทุนวิจัยกลางมหาวิทยาลัย(2013ZZ0076) สำหรับการสนับสนุนทางการเงิน




































































































































การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
3.3 . การรวมตัวของไขมันบางส่วนของวิปครีม
ผลของห้องเย็น หรือสเปรย์บนบางส่วนไขมัน
การรวมตัวของวิปครีมระหว่างวิปได้แสดงในรูปที่ 4 ก่อนที่จะเฆี่ยน
. ,
มีความแตกต่างอย่างไม่มีนัยสำคัญ ( P > 0.05 ) ระหว่าง fwc CWC ในการรวมตัวและบางส่วนของไขมันแต่
ทั้งสองลดลงกว่า PWC ซึ่งในข้อตกลง
ผลของขนาดอนุภาคเฉลี่ยและลักษณะ ( รูปที่ 2 ) .
เช่นความสัมพันธ์ระหว่างขนาดอนุภาคเฉลี่ยและ
รวมตัวบางส่วนของไขมันในวิปปิ้งครีมก็รายงานในการศึกษาของเรา
( จ้าว et al . , 2013 ) การรวมตัวของไขมันบางส่วนในตัวอย่าง
เพิ่มวิปปิ้งเวลา แม้ว่าการเพิ่ม
ราคาต่างกัน หลังจากฟาดนาน 3 นาทีการเพิ่มอัตราและเติบโตอย่างรวดเร็วจน fwc CWC
6 นาที ในขณะที่เพิ่มอัตราสำหรับ PWC ,
โดยทั่วไปคงที่และค่อนข้างต่ำ ( ประจบ
พล็อตบางส่วนรวมตัว vs วิปปิ้งเวลา ) แสดงว่า
พ่นแห้งอาจทำให้เกิดการพัฒนาบางส่วนรวมตัวใน
วิธีที่แตกต่างกันจากห้องเย็น . ระหว่างวิปปิ้ง , ไขมันหยด
เห็นได้ชัดว่าบางส่วนนี้รวมตัวกันเร็วกว่า fwc หลังจาก
3 นาทีวิปปิ้งและถึงระดับเดียวกัน
รวมตัวบางส่วนที่ PwC ที่ 4 นาที ( แม้ว่าเริ่มต้นบางส่วนรวมตัว
ในนี้เกือบครึ่งที่ PwC ) หลังจากวิปปิ้งสำหรับ
5 นาที การรวมตัวของไขมันบางส่วนในหลั่น
( CWC > fwc > PWC ) ระหว่าง 45.39 ± 1.26 % จะขึ้น
± 1.42 %ผลการศึกษาพบว่า สภาวะจะมีอิทธิพลต่อ
การพัฒนาเครือข่ายบางส่วนรวมตัวกัน

อ้วนมาก เก็บรักษาที่อุณหภูมิ 4 องศาเซลเซียส อาจจะถือว่าเป็นกระบวนการชราซึ่ง
คิดปลดปล่อยตามมาของโปรตีนในอิมัลชัน ( กอฟ
, 1997 ) เพราะการมีปฏิสัมพันธ์ระหว่างโปรตีนและโมเลกุลต่ำ น้ำหนักสารลดแรงตึงผิวที่เชื่อมต่อ

จึงจัดเตรียมใหม่เยื่อไขมันในอิมัลชันที่เกิดขึ้นระหว่างอายุ ( บาร์ฟอร์ด
krog น , , , &บักไฮม์ , 1991 ) ส่ง โพธิเย็น courthaudon , เลอ , ,
meste และ Lorient ( 1994 ) รายงานว่าปริมาณของโปรตีนเพิ่มขึ้นอย่างต่อเนื่องในช่วง unadsorbed

อายุที่พบในการศึกษานี้ PwC มีโปรตีนเข้มข้นสูงพื้นผิว
ตามด้วย fwc นี้ในระหว่างและวิปปิ้ง ( ข้อมูล
ไม่แสดง )การลดลงของความเข้มข้นของโปรตีนผิวถูกรายงาน
ลดความมั่นคงของไขมันหยดกับ
รวมตัวบางส่วนระหว่างวิปปิ้ง , เนื่องจากการลดลงของโปรตีนเอ
มีเสถียรภาพ ( bolliger กอฟ& , , ป , 2000 ) ดังนั้น จึงเป็นที่เข้าใจกันว่า การรวมตัวของไขมันบางส่วน

นี้สูงกว่าที่ fwc . sliwinski et al . ( 2546 ) พบว่า การอบแห้งแบบพ่นฝอยและ
เองจะไม่ทำให้เพิ่มขนาดใหญ่ของการดูดซับโปรตีน
โหลด อย่างไรก็ตาม การเพิ่มขึ้นของขนาดอนุภาคของ PwC ที่นำไปสู่การลด
พื้นที่ผิวจำเพาะจึงเพิ่มความเข้มข้นของโปรตีนผิว
ดังนั้นสำหรับ PWC ช้าเพิ่ม
รวมตัวบางส่วนอาจจะเกิดจากการดูดซับหนาแน่นชั้นมี
การยับยั้งชั่งใจการรวมตัวของหยดไขมันกึ่งแข็ง .
3.4 .ลักษณะของวิปครีม
คืบ คืบตัวอย่างช่วง 5 นาทีของเส้นโค้งที่แสดงในรูปที่วิปปิ้ง
5 ความชันของเส้นโค้ง มีแนวโน้มคงที่ในช่วงปลาย
( ~ 100 ) แสดงการสมดุลความ เครียดของ
fwc มากกว่าของ CWC ในขณะที่ PWC
จัดแสดงเพิ่มขึ้นโดดเด่นในสายพันธุ์ พารามิเตอร์ของแบบจำลองเบอร์เกอร์
ได้รับในตารางที่ 2ตัวอย่างที่ถูกอธิบายโดยโมเดล
เบอร์เกอร์ ที่คล้ายกันหลั่น ( PWC > fwc > CWC )
ยังนำเสนอในเวลา ( หมายถึง ( L ) และคลาน
การปฏิบัติ ( เจ ) อย่างไรก็ตาม จุดคราก ( t0 ) พบได้ใน
กลับสั่ง ต่อความเครียดของ PWC ( 41.65 ± 1.03 PA ) คือ
อย่างมีนัยสำคัญทางสถิติ ( P < 0.05 ) มีขนาดเล็กกว่าของ fwc ( 88.25 ± 1.30 PA )
) ในขณะที่นี้ผลผลิตสูงสุดความเครียด ( 168 .50 ± 2.26 PA ) .
วัสดุที่มีค่าความหนืดที่สูงขึ้นแข็งแกร่งพันธบัตร
ระหว่างหน่วยโครงสร้าง มีความสัมพันธ์ทางบวกระหว่าง
ต่อความเครียดและค่าความหนืด ( ข้อมูลไม่แสดง ) ทั้ง
ซึ่งเป็นจํานวนของโลก . ขอบเขตของการสมดุล
ยืดหยุ่นให้ข้อมูลเชิงลึกเป็นโครงสร้างความแข็งแรง
วัสดุมีมาตรฐานสูง มีโครงสร้างที่อ่อนแอและแข็งแรง หรือแข็งน้อยแทน
ตามโครงสร้าง ( sozer , 2009 ) .
เวลาความเกี่ยวข้องกับง่ายวัสดุดัดแปลงเป็น
โหลดประยุกต์ ( foegeding , น้ำตาล , Drake , &เดาเบิร์ต , 2003 ) ซึ่งสะท้อนให้เห็นถึงการต้านทานการเสียรูปถาวร

ในระยะยาวภายใต้โหลด เวลาการรักษาสั้นหมายความว่ารูปร่างดีขึ้น
.การวิเคราะห์ผลของการรวมตัวไปยืนยันบางส่วนของไขมัน
ของวิปปิ้งครีม ซึ่งอาจจะใช้เพื่อแสดงลักษณะของความแข็งแรงยืดหยุ่น
พันธบัตรสร้างโครงสร้างเครือข่าย เป็นโครงสร้างที่แข็งแรง มีความต้านทานต่อการ
ได้มากกว่าโครงสร้างที่อ่อนแอ การรวมตัวบางส่วน
ที่สูงขึ้นของไขมันหมายถึงแข็งแกร่ง threedimensional
โครงสร้างเครือข่าย ระบุเสถียรภาพดีกว่า

วิปปิ้งครีม3.5 . การบุกรุกของวิปครีม
รูปที่ 4B นำเสนอที่แตกต่างกันการเปลี่ยนแปลงรูปแบบของการบุกรุก
วิปปิ้งเวลา ระหว่างวิปปิ้ง , บุกรุกทั้งสองนี้ได้เร็วขึ้นและ fwc
เพิ่มขึ้นอย่างมีนัยสำคัญ ( P < 0.05 ) กว่า PWC .
ข้อมูลสูงสุดที่ 5 นาทีพบนี้ในขณะที่ fwc มี
บุกรุกสูงกว่านี้หลังจาก 6 นาทีวิปปิ้ง .
ที่น่าสนใจเหล่านี้ข้อมูล การเปลี่ยนแปลงแนวโน้มแตกต่างจากพวกไขมันบางส่วนรวมตัว
ที่ในระยะปลายของวิปปิ้ง ( รูปที่ 4 ) ผลลัพธ์เหล่านี้ชี้ให้เห็นว่า การรวมตัวของไขมันบางส่วน

เป็นหลัก แต่ไม่เฉพาะปัจจัยที่มีอิทธิพลต่อการบุกรุกของวิปครีม
ตามที่รายงานในการศึกษาของเรา โปรตีนพื้นผิวผกผัน
เป็นสัดส่วนกับการบุกรุก ( จ้าว et al . , 2013 )เพราะ airewater
อินเตอร์เฟซที่ปรับปรุงคุณภาพด้วยเซรั่มโปรตีนเป็นสิ่งจำเป็นสำหรับการเพิ่มเสถียรภาพและมั่นคง
โฟม ( จาง&กอฟ , 2004 ) นอกจากนี้
เพิ่มความหนืดของครีม ทำให้ unwhipped ยกระดับ
วิปปิ้งเวลาและลดการบุกรุก ( คามาโช่ , มาร์ทı neznavarrete
& chiralt , 1998 ) เนื่องจากความต้านทานเพิ่มเฉือน
ระหว่างวิปปิ้ง . ดังนั้นการบุกรุกของ PWC คาดว่า
เพิ่มขึ้นอย่างช้าๆ นอกจากนี้ การรวมตัวของไขมันบางส่วนสูงกว่าผล
สูงกว่า overrun เป็นผลของการเพิ่มประสิทธิภาพแอร์ดัก .
แต่ overwhipping ของวิปครีมทำให้กลับไม่ได้
clumping ของหยดไขมัน ซึ่งทำให้บางส่วนของการหยุดชะงัก
โครงสร้างของโฟมกับการสูญเสียของปริมาณอากาศ ( อัลเลน ดิค&
Murray , 2549 , )มันอาจจะอธิบายเพิ่มในการบุกรุกของ CWC หลังจาก 5 นาทีวิปปิ้ง
.
4 สรุป
มันได้แสดงความสำคัญของการเลือกการรักษาที่เหมาะสม
/ กระบวนการที่จะขยายอายุการเก็บรักษาของอิมัลชันสำหรับ
วิปปิ้งครีม เก็บอุณหภูมิ เช่น  18 หรือ 4 C
อิมัลชันนำการเปลี่ยนแปลงอย่างมากในการรวมตัวของไขมันบางส่วนและ
ความแตกต่างบุกรุกของวิปปิ้งครีมไขมันหยด
เย็นบางส่วนมากขึ้นและเร็วกว่าสารรวมตัวกันของ
อิมัลชันแช่แข็ง เห็นได้จากผลของขนาดอนุภาคเฉลี่ย
ค่าความหนืด ผลผลิต ความเครียด การคืบและบุกรุก .
ก็เป็นไปได้ที่จะผลิตผงวิปปิ้งครีมโดย
พ่นแห้ง แม้ว่าปัจจุบันกระบวนการพ่นแห้ง ( เมื่อเทียบกับ
แช่เย็นและแช่แข็ง storages ) ลดลงอิมัลชันคงตัว
ฟาดสมบัติและเสถียรภาพของค่าโฟมวิป
ครีม พิจารณาข้อดีของพื้นที่จัดเก็บ การขนส่ง
และการจัดการความสะดวก การประหยัดพลังงานและสิ่งแวดล้อมอย่างยั่งยืน
กระบวนการพ่นแห้งสามารถเป็นตัวแทนของทางเลือกที่มีศักยภาพ
สนใจพาณิชย์ อย่างไรก็ตาม การ
อิมัลชัน รวมทั้งเลือกเอสพี และ encapsulant เป็น
เป็นสเปรย์แห้งกระบวนการผลิตผงวิปครีม
ยังคงต้องมีการปรับให้เหมาะสม การป้องกันการสูญเสียที่ไม่พึงประสงค์ในกิจกรรมและขบวนการ
พื้นผิวที่คล้ายกันหรือเทียบเท่าขนาดของอนุภาค การกระจายอิมัลชันสำหรับผู้ปกครองสะดวก

สร้างอิมัลชันสามารถวัดได้ทันทีสำหรับการเพิ่มประสิทธิภาพในอนาคต

ขอบคุณ
ผู้เขียนขอขอบคุณ มูลนิธิวิทยาศาสตร์แห่งชาติ
ธรรมชาติของจีน ( ไม่ 20806030 ) และพื้นฐาน
ทุนวิจัยสำหรับส่วนกลางมหาวิทยาลัย ( 2013zz0076 )

สนับสนุนทางการเงิน
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: