These descriptions of the real numbers are not sufficiently rigorous by the modern standards of pure mathematics. The discovery of a suitably rigorous definition of the real numbers – indeed, the realization that a better definition was needed – was one of the most important developments of 19th century mathematics. The currently standard axiomatic definition is that real numbers form the unique Archimedean complete totally ordered field (R ; + ; · ; <), up to an isomorphism,whereas popular constructive definitions of real numbers include declaring them as equivalence classes of Cauchy sequences of rational numbers, Dedekind cuts, or certain infinite "decimal representations", together with precise interpretations for the arithmetic operations and the order relation. These definitions are equivalent in the realm of classical mathematics.The reals are uncountable; that is: while both the set of all natural numbers and the set of all real numbers are infinite sets, there can be no one-to-one function from the real numbers to the natural numbers: the cardinality of the set of all real numbers (denoted mathfrak c and called cardinality of the continuum) is strictly greater than the cardinality of the set of all natural numbers (denoted aleph_0). The statement that there is no subset of the reals with cardinality strictly greater than aleph_0 and strictly smaller than mathfrak c is known as the continuum hypothesis (CH). It is known to be neither provable nor refutable using the axioms of Zermelo–Fraenkel set theory (ZF), the standard foundation of modern mathematics, in the sense that some models of ZF satisfy CH while others violate it.
การแปล กรุณารอสักครู่..