Step 2. SELECT THE CEMENTED CARBIDE GRADES
There are two main groups of cemented carbides from which to select most grades: first, the straight carbide grades composed of tungsten carbide and cobalt binder, which are used for cast iron, nonferrous metals, and nonmetallic where resistance to edge wear is the primary factor; and second, grades composed of tungsten carbide, titanium carbide, and tantalum carbide plus cobalt binder, which are usually used for machining steels. Resistance to cratering and deformation is the major requirement for these steel grades.
Properties that determine grade include hardness, toughness, and resistance to chip welding or cratering. The properties of carbide tools may be varied by the percentages of cobalt and titanium or tantalum carbides. Increasing the cobalt content increases toughness but decreases hardness. Properties may also be varied during the processing by the grain size of carbide, density, and other modifications. Some tungsten carbide inserts are given a titanium carbide coating (about .0003 in. thick) to resist cratering and edge break-down Tantalum carbide is added to sintered carbide principally to improve not hardness characteristics. This increases the composition’s resistance to deformation at cutting temperatures.
The grades of carbides have been organized according to their suitable uses by the cemented carbide producers association (CCPA). It is recommended that carbides be selected by using such a table rather than by their composition. Cemented carbide grades with specitic chip removal applications are:
C-1 Roughing cuts (cast iron and nonferrous materials)
C-2 General purpose (cast iron and nonferrous materials )
C-3 light finishing (cast iron and nonferrous materials )
C-4 Precision boring (cast iron and nonferrous materials )
C-5 Roughing cuts (steel)
C-6 general purpose (steel)
C-7 Finishing cuts (steel)
C-8 Precision boring (steel)
The hardest of the nonferrous/cast iron grades is C-4 and the hardest of the steel grades is C-8.
This system does not specify the particular materials or alloy, and the particular machining operations are not specified. For example, For turning a chromium-molybdenum steel, factors to be considered would include the difficulty of machining such an alloy because of its toughness. Given this example, a grade of C-5 or C-6 carbide would probably be best suited to this operation. The proof of the selection would come only with the actual machining. Cemented carbide tool manufacturers often supply catalogs designating uses and machining characteristics of their various grades. See table F-5.
Grade classification-comparison tables that convert each manufacurer’s carbide designation to CCPA “C” numbers are available. See Table F-6.
There is however, one major caution. The tables are intended to correlate grades on the basis of composition, not according to tested performance. Grades from different manufacturers having the same “C” number may vary in performance. Some general guidelines to grade selection are as follows:
1. Select the grade with the highest hardness with sufficient strength to prevent breakage.
2. Select straight grades of tungsten carbide for the highest resistance to abrasion.
ขั้นตอนที่ 2 เลือกเกรดไบด์ มี 2 กลุ่มหลักของคาร์ไบด์ที่เลือกส่วนใหญ่เกรด: เกรดคาร์ไบด์ตรงประกอบด้วยทังสเตนคาร์ไบด์และโคบอลต์ binder ซึ่งใช้สำหรับเหล็ก a: ferrous โลหะ ครั้งแรก และ nonmetallic ที่ต้านทานการสึกหรอของขอบ ตัวหลัก และสอง เกรดประกอบด้วยทังสเตนคาร์ไบด์ คาร์ไบด์ไทเทเนียม และแทนทาลัมคาร์ไบด์และโคบอลต์ binder ซึ่งมักจะใช้สำหรับตัดเฉือน steels ทนต่อ cratering และแมพเป็นข้อกำหนดสำคัญสำหรับเกรดเหล็กเหล่านี้คุณสมบัติที่กำหนดเกรดได้แก่ความแข็ง นึ่ง และต้านทานการชิพการเชื่อม หรือ cratering คุณสมบัติของเครื่องมือคาร์ไบด์อาจจะแตกต่างกันตามเปอร์เซ็นต์ของโคบอลต์ และไทเทเนียม หรือแทนทาลัม carbides เพิ่มเนื้อหาโคบอลต์นึ่งเพิ่มขึ้น แต่ลดความแข็ง คุณสมบัติอาจจะแตกต่างกันระหว่างการประมวลผลตามขนาดเม็ดคาร์ไบด์ ความหนาแน่น และอื่น ๆ แก้ไข บางแทรกทังสเตนไฮไดรด์ได้เป็นไททาเนียมคาร์ไบด์เคลือบ (ประมาณ.0003 ค่ะที่หนา) เพื่อต่อต้าน cratering และเพิ่มขอบแบ่งลงแทนทาลัมไฮไดรด์ไฮไดรด์เผาหลักเพื่อปรับปรุงลักษณะความแข็งไม่ เพิ่มความต้านทานของส่วนประกอบการแมพที่ตัดอุณหภูมิ มีการจัดเกรดของ carbides ตามการใช้ที่เหมาะสม โดยสมาคมผู้ผลิตไบด์ (CCPA) ขอแนะนำว่า carbides เลือก โดยใช้ตารางดังกล่าว แทน โดยองค์ประกอบของพวกเขา คาร์ไบด์เกรด ด้วยโปรแกรมประยุกต์เอาชิพ specitic:C-1 Roughing cuts (cast iron and nonferrous materials)C-2 General purpose (cast iron and nonferrous materials )C-3 light finishing (cast iron and nonferrous materials )C-4 Precision boring (cast iron and nonferrous materials )C-5 Roughing cuts (steel)C-6 general purpose (steel)C-7 Finishing cuts (steel)C-8 Precision boring (steel)The hardest of the nonferrous/cast iron grades is C-4 and the hardest of the steel grades is C-8.This system does not specify the particular materials or alloy, and the particular machining operations are not specified. For example, For turning a chromium-molybdenum steel, factors to be considered would include the difficulty of machining such an alloy because of its toughness. Given this example, a grade of C-5 or C-6 carbide would probably be best suited to this operation. The proof of the selection would come only with the actual machining. Cemented carbide tool manufacturers often supply catalogs designating uses and machining characteristics of their various grades. See table F-5. Grade classification-comparison tables that convert each manufacurer’s carbide designation to CCPA “C” numbers are available. See Table F-6. There is however, one major caution. The tables are intended to correlate grades on the basis of composition, not according to tested performance. Grades from different manufacturers having the same “C” number may vary in performance. Some general guidelines to grade selection are as follows:1. เลือกเกรดที่ มีความแข็งสูงมีแรงพอที่จะป้องกันเคมีฯ2. เลือกตรงเกรดของทังสเตนไฮไดรด์สำหรับต่อต้านการขัดถูสูง
การแปล กรุณารอสักครู่..

Step 2. SELECT THE CEMENTED CARBIDE GRADES
There are two main groups of cemented carbides from which to select most grades: first, the straight carbide grades composed of tungsten carbide and cobalt binder, which are used for cast iron, nonferrous metals, and nonmetallic where resistance to edge wear is the primary factor; and second, grades composed of tungsten carbide, titanium carbide, and tantalum carbide plus cobalt binder, which are usually used for machining steels. Resistance to cratering and deformation is the major requirement for these steel grades.
Properties that determine grade include hardness, toughness, and resistance to chip welding or cratering. The properties of carbide tools may be varied by the percentages of cobalt and titanium or tantalum carbides. Increasing the cobalt content increases toughness but decreases hardness. Properties may also be varied during the processing by the grain size of carbide, density, and other modifications. Some tungsten carbide inserts are given a titanium carbide coating (about .0003 in. thick) to resist cratering and edge break-down Tantalum carbide is added to sintered carbide principally to improve not hardness characteristics. This increases the composition’s resistance to deformation at cutting temperatures.
The grades of carbides have been organized according to their suitable uses by the cemented carbide producers association (CCPA). It is recommended that carbides be selected by using such a table rather than by their composition. Cemented carbide grades with specitic chip removal applications are:
C-1 Roughing cuts (cast iron and nonferrous materials)
C-2 General purpose (cast iron and nonferrous materials )
C-3 light finishing (cast iron and nonferrous materials )
C-4 Precision boring (cast iron and nonferrous materials )
C-5 Roughing cuts (steel)
C-6 general purpose (steel)
C-7 Finishing cuts (steel)
C-8 Precision boring (steel)
The hardest of the nonferrous/cast iron grades is C-4 and the hardest of the steel grades is C-8.
This system does not specify the particular materials or alloy, and the particular machining operations are not specified. For example, For turning a chromium-molybdenum steel, factors to be considered would include the difficulty of machining such an alloy because of its toughness. Given this example, a grade of C-5 or C-6 carbide would probably be best suited to this operation. The proof of the selection would come only with the actual machining. Cemented carbide tool manufacturers often supply catalogs designating uses and machining characteristics of their various grades. See table F-5.
Grade classification-comparison tables that convert each manufacurer’s carbide designation to CCPA “C” numbers are available. See Table F-6.
There is however, one major caution. The tables are intended to correlate grades on the basis of composition, not according to tested performance. Grades from different manufacturers having the same “C” number may vary in performance. Some general guidelines to grade selection are as follows:
1. Select the grade with the highest hardness with sufficient strength to prevent breakage.
2. Select straight grades of tungsten carbide for the highest resistance to abrasion.
การแปล กรุณารอสักครู่..
