Whereas both EcO157 and S. Typhimurium population sizes increased 102-fold on healthy leaf tissue under conditions of warm temperature and free water on the leaves, they increased by 105-fold in necrotic lesions caused by B. lactucae. Confocal microscopy of GFP-EcO157 in the necrotic tissue confirmed its massive population density and association with the oomycete hyphae. Multiplication of EcO157 in the diseased tissue was significantly lower in the RH08-0464 lettuce line, which has a high level of resistance to downy mildew than in the more susceptible cultivar Triple Threat. qRT-PCR quantification of expression of the plant basal immunity gene PR-1, revealed that this gene had greater transcriptional activity in line RH08-0464 than in cultivar Triple Threat, indicating that it may be one of the factors involved in the differential growth of the human pathogen in B. lactucae lesions between the two lettuce accessions. Additionally, downy mildew disease had a significant effect on the colonization of EcO157 at high relative humidity (RH 90-100%) and on its persistence at lower RH (65-75%). The latter conditions, which promoted overall dryness of the lettuce leaf surface, allowed for only 0.0011% and 0.0028% EcO157 cell survival in healthy and chlorotic tissue, respectively, whereas 1.58% of the cells survived in necrotic tissue.