Theorem 1.1 ([1], Theorem 2.1.(ii)). Let n be a positive integer and p 1 be a real number. Let us define G(n, p) = Pn i=1 ip/ np+1, then G(n+1, p) G(n, p) for each p 1 and for each positive integer n.
Theorem 1.1 ([1], Theorem 2.1.(ii)). Let n be a positive integer and p 1 be a real number.Let us define G(n, p) =Pni=1 ip/ np+1, then G(n+1, p) G(n, p) for each p 1 and for eachpositive integer n.